GalSim: The modular galaxy image simulation toolkit

GALSIM is a collaborative, open-source project aimed at providing an image simulation tool of enduring benefit to the astronomi cal community. It provides a software library for generating images of astronomical objects such as stars and galaxies in a variety of ways, efficiently handling image transformations and opera tions such as convolution and rendering at high precision. We describe the GALSIM software and its capabilities, including necessary theore tical background. We demonstrate that the performance of GALSIM meets the stringent requirements of high precision image analysis applications such as weak gravitational lensing, fo r current datasets and for the Stage IV dark energy surveys of the Large Synoptic Survey Telescope, ESA’s Euclid mission, and NASA’s WFIRST-AFTAmission. The GALSIM project repository is public and includes the full code hist ory, all open and closed issues, installation instructions, documentation, and wi ki pages (including a Frequently Asked Questions section). The GALSIM repository can be found at https://github.com/GalSim-developers/GalSim.

[1]  Suresh Seshadri,et al.  Initial Results from a Laboratory Emulation of Weak Gravitational Lensing Measurements , 2013, 1308.3875.

[2]  Aaron Roodman,et al.  THE THIRD GRAVITATIONAL LENSING ACCURACY TESTING (GREAT3) CHALLENGE HANDBOOK , 2013, 1308.4982.

[3]  Hendrik Hildebrandt,et al.  On the complementarity of galaxy clustering with cosmic shear and flux magnification , 2013, 1306.6870.

[4]  R. Ellis,et al.  The Shear TEsting Programme 2: Factors affecting high precision weak lensing analyses , 2006, astro-ph/0608643.

[5]  M. Bethge,et al.  Results of the GREAT08 Challenge?: an image analysis competition for cosmological lensing: Results o , 2009, 0908.0945.

[6]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[7]  Edwin A. Valentijn,et al.  The Kilo-Degree Survey , 2012, Experimental Astronomy.

[8]  M. Giavalisco,et al.  The COSMOS Survey: Hubble Space Telescope Advanced Camera for Surveys Observations and Data Processing , 2007 .

[9]  Xu Zhou,et al.  Ghost Image Correction in CSTAR Photometry , 2013 .

[10]  D. Bacon,et al.  Galaxy-Galaxy Flexion: Weak Lensing to Second Order , 2004, astro-ph/0406376.

[11]  M. Bartelmann Gravitational lensing , 2010, 1010.3829.

[12]  E. Sheldon An implementation of Bayesian lensing shear measurement , 2014, 1403.7669.

[13]  P. Schneider,et al.  B-modes in cosmic shear from source redshift clustering , 2002 .

[14]  Christian Poivey,et al.  The Radiation Environment for the Next Generation Space Telescope , 2000 .

[15]  David Makinson,et al.  Sets, Logic and Maths for Computing , 2008, Undergraduate Topics in Computer Science.

[16]  R. Massey,et al.  Polar Shapelets , 2004, astro-ph/0408445.

[17]  J. E. Gunn,et al.  Astrophysically Motivated Bulge-Disk Decompositions of SDSS Galaxies , 2012, 1201.0763.

[18]  S. Bridle,et al.  Limitations of model-fitting methods for lensing shear estimation , 2009, 0905.4801.

[19]  Massimo Stiavelli,et al.  WFPC2 Observations of the Hubble Deep Field South , 2000, astro-ph/0010245.

[20]  Roberto Scaramella,et al.  On the shear estimation bias induced by the spatial variation of colour across galaxy profiles. , 2012, 1211.5025.

[21]  A. S. Fruchter,et al.  Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998 .

[22]  Clive G. Page,et al.  Definition of the Flexible Image Transport System (FITS), version 3.0 , 2010 .

[23]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[24]  Marina Shmakova,et al.  Higher moments in weak gravitational lensing and dark matter structures , 2005 .

[25]  Yannick Mellier,et al.  Flexion measurement in simulations of Hubble Space Telescope data. , 2012, 1211.0966.

[26]  P. Astier,et al.  The brighter-fatter effect and pixel correlations in CCD sensors , 2014, 1402.0725.

[27]  A. Réfrégier Shapelets: I. a method for image analysis , 2001, astro-ph/0105178.

[28]  William H. Press,et al.  Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .

[29]  Matthew R. Becker,et al.  calclens: weak lensing simulations for large-area sky surveys and second-order effects in cosmic shear power spectra , 2012, 1210.3069.

[30]  D. Fried Optical Resolution Through a Randomly Inhomogeneous Medium for Very Long and Very Short Exposures , 1966 .

[31]  Adam Amara,et al.  Noise bias in weak lensing shape measurements , 2012, 1203.5050.

[32]  L. Waerbeke,et al.  Shear and magnification: cosmic complementarity , 2009, 0906.1583.

[33]  M. Cropper,et al.  The impact of galaxy colour gradients on cosmic shear measurement , 2011, 1105.5595.

[34]  Konrad Kuijken,et al.  Probing galaxy dark matter haloes in COSMOS with weak lensing flexion , 2010, 1011.3041.

[35]  T. Patterson,et al.  The optimum addition of points to quadrature formulae. , 1968 .

[36]  Jeff Valenti,et al.  Understanding Persistence: A 3D Trap Map of an H2RG Imaging Sensor , 2014 .

[37]  Gary M. Bernstein,et al.  Atmospheric Dispersion Effects in Weak Lensing Measurements , 2012, 1204.1346.

[38]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .

[39]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[40]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[41]  Roberto Scaramella,et al.  Origins of weak lensing systematics, and requirements on future instrumentation (or knowledge of instrumentation) , 2012, 1210.7690.

[42]  Alexie Leauthaud,et al.  Precision simulation of ground-based lensing data using observations from space , 2011, 1107.4629.

[43]  Nick Kaiser A New Shear Estimator for Weak-Lensing Observations , 2000 .

[44]  H. Hoekstra,et al.  The Shear Testing Programme – I. Weak lensing analysis of simulated ground-based observations , 2005, astro-ph/0506112.

[45]  Michael Hirsch,et al.  Sersic galaxy models in weak lensing shape measurement: model bias, noise bias and their interaction , 2013, 1308.4663.

[46]  A. W. Kemp,et al.  Univariate Discrete Distributions , 1993 .

[47]  Tod R. Lauer,et al.  Combining Undersampled Dithered Images , 1999 .

[48]  A A Plazas,et al.  Transverse electric fields' effects in the Dark Energy Camera CCDs , 2014 .

[49]  Candace Oaxaca WrightTereasa G. Brainerd,et al.  Gravitational Lensing by NFW Halos , 1999, astro-ph/9908213.

[50]  Matthias Bartelmann Arcs from a Universal Dark-Matter Halo Profile , 1996 .

[51]  Rachel Mandelbaum,et al.  Optical-to-virial velocity ratios of local disc galaxies from combined kinematics and galaxy–galaxy lensing , 2011, 1110.4107.

[52]  G. Bernstein,et al.  Shear Recovery Accuracy in Weak-Lensing Analysis with the Elliptical Gauss-Laguerre Method , 2006, astro-ph/0607062.

[53]  Uros Seljak,et al.  Shear calibration biases in weak-lensing surveys , 2003, astro-ph/0301054.

[54]  Alexie Leauthaud,et al.  Pixel-based correction for Charge Transfer Inefficiency in the Hubble Space Telescope Advanced Camera for Surveys , 2009, 0909.0507.

[55]  S. Deustua,et al.  2010 Space Telescope Science Institute Calibration Workshop - Hubble after SM4. Preparing JWST , 2010 .

[56]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[57]  Massimo Viola,et al.  Means of confusion: how pixel noise affects shear estimates for weak gravitational lensing , 2012, 1204.5147.

[58]  B. T. P. Rowe,et al.  Weak gravitational flexion , 2006 .

[59]  F. Zernike,et al.  Diffraction Theory of the Knife-Edge Test and its Improved Form, The Phase-Contrast Method , 1934 .

[60]  A. Amara,et al.  Cosmic shear requirements on the wavelength dependence of telescope point spread functions , 2010, 1001.0759.

[61]  E. Greisen,et al.  Representations of celestial coordinates in FITS , 2002, astro-ph/0207413.

[62]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview* , 2006, astro-ph/0612305.

[63]  John Shawe-Taylor,et al.  HANDBOOK FOR THE GREAT08 CHALLENGE: AN IMAGE ANALYSIS COMPETITION FOR COSMOLOGICAL LENSING , 2008, 0802.1214.

[64]  R. Massey,et al.  IMAGE ANALYSIS FOR COSMOLOGY: RESULTS FROM THE GREAT10 STAR CHALLENGE , 2012, 1210.1979.

[65]  Michael R. Blanton,et al.  Systematic errors in weak lensing: application to SDSS galaxy-galaxy weak lensing , 2005 .

[66]  Gary M. Bernstein,et al.  Resampling images in fourier domain , 2014 .

[67]  H. Hoekstra,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.0032.

[68]  Jack Dongarra,et al.  Special Issue on Program Generation, Optimization, and Platform Adaptation , 2005, Proc. IEEE.

[69]  D. Huterer,et al.  Weak lensing, dark matter and dark energy , 2010, 1001.1758.

[70]  J. E. Meyers,et al.  Impact of chromatic effects on galaxy shape measurements , 2014 .

[71]  Yannick Mellier,et al.  ESA-ESO Working Group on "Fundamental Cosmology" , 2006 .

[72]  Adam Amara,et al.  Systematic bias in cosmic shear: extending the Fisher matrix , 2007, 0710.5171.

[73]  Gary M. Bernstein,et al.  Shape measurement biases from underfitting and ellipticity gradients , 2010, 1001.2333.

[74]  M. Bartelmann,et al.  Limitations on shapelet-based weak-lensing measurements , 2009, 0906.5092.

[75]  Masahiro Takada,et al.  Systematic errors in future weak-lensing surveys: requirements and prospects for self-calibration , 2006 .

[76]  Michael Frankfurter,et al.  Numerical Recipes In C The Art Of Scientific Computing , 2016 .

[77]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[78]  Anton M. Koekemoer,et al.  A DETECTION OF WEAK-LENSING MAGNIFICATION USING GALAXY SIZES AND MAGNITUDES , 2011, 1111.3679.

[79]  Rene Racine,et al.  THE TELESCOPE POINT SPREAD FUNCTION , 1996 .

[80]  G. Vaucouleurs,et al.  Photographic dimensions of the brighter galaxies , 1959 .

[81]  Cea,et al.  Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements , 2007, astro-ph/0702359.

[82]  David W. Hogg,et al.  Replacing Standard Galaxy Profiles with Mixtures of Gaussians , 2012, 1210.6563.

[83]  N. Kaiser,et al.  Mapping the dark matter with weak gravitational lensing , 1993 .

[84]  Andrew Rasmussen,et al.  Pixel area variations in sensors: a novel framework for predicting pixel fidelity and distortion in flat field response , 2014, 1403.3317.

[85]  C. Inguimbert,et al.  STARDUST: A Code for the Simulation of Particle Tracks on Arrays of Sensitive Volumes With Substrate Diffusion Currents , 2007, IEEE Transactions on Nuclear Science.

[86]  Michael Hirsch,et al.  Measurement and calibration of noise bias in weak lensing galaxy shape estimation , 2012, 1203.5049.

[87]  J. Rhodes,et al.  The Effects of Charge Transfer Inefficiency (CTI) on Galaxy Shape Measurements , 2010, 1002.1479.

[88]  Alexander S. Szalay,et al.  Galaxy–galaxy weak lensing in the Sloan Digital Sky Survey: intrinsic alignments and shear calibration errors , 2004 .

[89]  Gary M. Bernstein,et al.  Bayesian lensing shear measurement , 2013, 1304.1843.

[90]  T. Broadhurst,et al.  A Method for Weak Lensing Observations , 1994, astro-ph/9411005.

[91]  S. Harmeling,et al.  Image analysis for cosmology: results from the GREAT10 Galaxy Challenge , 2012, 1202.5254.

[92]  G. M. Bernstein,et al.  Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing , 2001 .

[93]  G. A. Luppino,et al.  Detection of Weak Lensing by a Cluster of Galaxies at z = 0.83 , 1996, astro-ph/9601194.

[94]  J. Amiaux,et al.  Defining a weak lensing experiment in space , 2012, 1210.7691.