Electric Propulsion of a Different Class: The Challenges of Testing for MegaWatt Missions

Currently, there is great interest in the development of high-power electric propulsion (EP) devices that can be employed in missions requiring >100 kW levels of propulsive power. Of the candidates for such thrusters, the Nested-channel Hall thruster (NHT) has been shown to be particularly scalable to this mission requirement. To this end, the University of Michigan’s Plasmadynamics and Electric Propulsion Laboratory (PEPL), in conjunction with both the Air Force Research Laboratory (AFRL) and NASA, has developed a 100-kW-class NHT called the X3. While bringing the X3 to test-ready status, a number of developmental and facility-related challenges were encountered and overcome. This paper presents these challenges and the lessons learned associated with the X3’s design, fabrication, and testing as a case study to inform other high-power EP development efforts.

[1]  T. W. Haag Thrust stand for high‐power electric propulsion devices , 1991 .

[2]  Robert S. Jankovsky,et al.  Performance Evaluation of a 50 kW Hall Thruster , 1999 .

[3]  Robert S. Jankovsky,et al.  High Power Hall Thrusters , 1999 .

[4]  Steven R. Oleson,et al.  Electric Propulsion for International Space Station Reboost: A Fresh Look , 2001 .

[5]  E. Choueiri Plasma oscillations in Hall thrusters , 2001 .

[6]  John H. Schilling,et al.  Comparison of Orbit Transfer Vehicle Concepts Utilizing Mid-Term Power and Propulsion Options , 2002 .

[7]  Robert S. Jankovsky,et al.  Laboratory Model 50 kW Hall Thruster , 2002 .

[8]  David H. Manzella,et al.  Investigation of Low Voltage/High Thrust Hall Thruster Operation , 2003 .

[9]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[10]  Ioannis G. Mikellides,et al.  Assessment of High-Voltage Solar Array Concepts for a Direct Drive Hall Effect Thruster System , 2003 .

[11]  David H. Manzella,et al.  50 KW Class Krypton Hall Thruster Performance , 2003 .

[12]  David H. Manzella,et al.  The Performance and Wear Characterization of a High-Power High-Isp NASA Hall Thruster , 2005 .

[13]  Dana Andrews,et al.  AIAA 2005-6739 Solar Electric Space Tug to Support Moon and Mars Exploration Missions , 2005 .

[14]  Ioannis G. Mikellides,et al.  The nuclear-electric pulsed inductive thruster (NuPIT): mission analysis for Prometheus , 2005 .

[15]  Steven R. Oleson,et al.  The Prometheus 1 spacecraft preliminary electric propulsion system design , 2005 .

[16]  Narayanan Komerath,et al.  The Space Power Grid , 2006 .

[17]  Robert H. Frisbee Evaluation of high-power solar electric propulsion using advanced Ion, Hall, MPD, and PIT thrusters for Lunar and Mars cargo missions, , 2006 .

[18]  David Manzella,et al.  Low Cost Electric Propulsion Thruster for Deep Space Robotic Missions , 2007 .

[19]  Hani Kamhawi,et al.  Hall Thruster Technology for NASA Science Missions: HiVHAC Status Update , 2007 .

[20]  David Manzella Low Cost Electric Propulsion Thruster for Deep Space Robotic Science Missions , 2008 .

[21]  Alec D. Gallimore,et al.  Evaluation of Plume Divergence and Facility Effects on Far-Field Faraday Probe Current Density Profiles , 2009 .

[22]  David Kirtley,et al.  Pulsed Plasmoid Propulsion: The ELF Thruster , 2009 .

[23]  Daniel L. Brown,et al.  Investigation of low discharge voltage Hall thruster characteristics and evaluation of loss mechanisms , 2009 .

[24]  M. Andrenucci,et al.  HiPER : a Roadmap for Future Space Exploration with innovative Electric Propulsion Technologies , 2009 .

[25]  A. Mathers,et al.  Demonstration of 10,400 Hours of Operation on a 4.5 kW Qualification Model Hall Thruster , 2010 .

[26]  Edgar Y. Choueiri,et al.  Scaling of Efficiency with Applied Magnetic Field in Mangnetoplasmadynamic Thrusters , 2010 .

[27]  Alec D. Gallimore,et al.  Far-Field Plume Measurements of a Nested-Channel Hall-Effect Thruster (PREPRINT) , 2010 .

[28]  James M. Haas,et al.  Air Force Research Laboratory high power electric propulsion technology development , 2010, 2010 IEEE Aerospace Conference.

[29]  Richard Hofer,et al.  High-Specific Impulse Operation of the BPT-4000 Hall Thruster for NASA Science Missions , 2010 .

[30]  I. Mikellides,et al.  Magnetic Shielding of the Acceleration Channel Walls in a Long-Life Hall Thruster , 2010 .

[31]  Andrew V. Ilin,et al.  Fast Transits to Mars Using Electric Propulsion , 2010 .

[32]  Benjamin Donahue,et al.  Solar Electric and Nuclear Thermal Propulsion Architectures for Human Mars Missions Beginning In 2033 , 2010 .

[33]  Nathan J. Strange,et al.  300-kW Solar Electric Propulsion System Configuration for Human Exploration of Near-Earth Asteroids , 2011 .

[34]  Alec D. Gallimore,et al.  Developmental Status of a 100-kW Class Laboratory Nested channel Hall Thruster , 2011 .

[35]  Nathan J. Strange,et al.  Human Missions to Phobos and Deimos Using Combined Chemical and Solar Electric Propulsion , 2011 .

[36]  R Albertoni,et al.  Experimental Study of a 100-kW class Applied-Field MPD Thruster , 2011 .

[37]  Richard R. Hofer,et al.  Mass and Cost Model for Selecting Thruster Size in Electric Propulsion Systems , 2011 .

[38]  Edgar Y. Choueiri,et al.  Scaling of Efficiency with Applied Magnetic Field in Magnetoplasmadynamic Thrusters , 2012 .

[39]  David H. Manzella,et al.  Hall Thruster Technology for NASA Science Missions , 2013 .

[40]  David H. Manzella,et al.  NASA's 2004 Hall Thruster Program , 2013 .

[41]  Dan M. Goebel,et al.  High-Current Lanthanum Hexaboride Hollow Cathode for High-Power Hall Thrusters , 2014 .