Optimal filtering in singular spectrum analysis

Singular spectrum analysis (SSA) provides a robust method of separating an arbitrary signal from “white” (independent, identically distributed) noise. In the presence of “coloured” noise, or any autocorrelated process, high-variance components of the noise can confuse the singular value decomposition, thereby obscuring genuine signals which are, in principle, detectable. A generalization of SSA is presented which yields both an optimal filter to discriminate against an arbitrary coloured noise and an objective method of quantifying uncertainty in signal reconstruction. The algorithm is applied to a simple synthetic signal-separation problem and used to resolve a degeneracy in the SSA of interannual and interdecadal variability of the Earth's global mean temperature.

[1]  Leonard A. Smith,et al.  Monte Carlo SSA: Detecting irregular oscillations in the Presence of Colored Noise , 1996 .

[2]  M. Richman,et al.  Rotation of principal components , 1986 .

[3]  W. Thacker,et al.  Climatic indices, principal components, and the Gauss-Markov theorem , 1996 .

[4]  Michèle Basseville,et al.  Early warning of slight changes in systems , 1994, Autom..

[5]  Leonard A. Smith,et al.  Investigating the origins and significance of low‐frequency modes of climate variability , 1994 .

[6]  M. Ghil,et al.  Interannual and Interdecadal Variability in 335 Years of Central England Temperatures , 1995, Science.

[7]  R. Vautard,et al.  Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series , 1989 .

[8]  J. Heinemeier,et al.  Clams before Columbus? , 1992, Nature.

[9]  MYLES R. ALIEN,et al.  Temperature time-series? , 1992, Nature.

[10]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[11]  J. Elsner,et al.  Do bidecadal oscillations exist in the global temperature record? , 1991, Nature.

[12]  Michael Ghil,et al.  Intraseasonal oscillations in the global atmosphere. I - Northern Hemisphere and tropics , 1991 .

[13]  M. Ghil,et al.  Interdecadal oscillations and the warming trend in global temperature time series , 1991, Nature.

[14]  M. Allen,et al.  Distinguishing modulated oscillations from coloured noise in multivariate datasets , 1996 .

[15]  A. A. TSONIS,et al.  Oscillating global temperature , 1992, Nature.

[16]  R. Vautard,et al.  Singular-spectrum analysis: a toolkit for short, noisy chaotic signals , 1992 .

[17]  W. Thacker Metric-based principal components: data uncertainties , 1996 .

[18]  Klaus Fraedrich,et al.  Estimating the Dimensions of Weather and Climate Attractors , 1986 .

[19]  K. Hasselmann Optimal Fingerprints for the Detection of Time-dependent Climate Change , 1993 .

[20]  D. Broomhead,et al.  Cancelling deterministic noise by constructing nonlinear inverses to linear filters , 1996 .

[21]  Robert E. Livezey,et al.  Practical Considerations in the Use of Rotated Principal Component Analysis (RPCA)in Diagnostic Studies of Upper-Air Height Fields , 1988 .

[22]  Michael Ghil,et al.  Software expedites singular‐spectrum analysis of noisy time series , 1995, Eos, Transactions American Geophysical Union.