Fungi, bacteria and oomycota opportunistically isolated from the seagrass, Zostera marina

Fungi in the marine environment are often neglected as a research topic, despite that fungi having critical roles on land as decomposers, pathogens or endophytes. Here we used culture-dependent methods to survey the fungi associated with the seagrass, Zostera marina, also obtaining bacteria and oomycete isolates in the process. A total of 108 fungi, 40 bacteria and 2 oomycetes were isolated. These isolates were then taxonomically identified using a combination of molecular and phylogenetic methods. The majority of the fungal isolates were classified as belonging to the classes Eurotiomycetes, Dothideomycetes, and Sordariomycetes. Most fungal isolates were habitat generalists like Penicillium sp. and Cladosporium sp., but we also cultured a diverse set of rare taxa including possible habitat specialists like Colletotrichum sp. which may preferentially associate with Z. marina leaf tissue. Although the bulk of bacterial isolates were identified as being from known ubiquitous marine lineages, we also obtained several Actinomycetes isolates and a Phyllobacterium sp. We identified two oomycetes, another understudied group of marine microbial eukaryotes, as Halophytophthora sp. which may be opportunistic pathogens or saprophytes of Z. marina. Overall, this study generates a culture collection of fungi which adds to knowledge of Z. marina associated fungi and highlights a need for more investigation into the functional and evolutionary roles of microbial eukaryotes associated with seagrasses.

[1]  Kohske Takahashi,et al.  Welcome to the Tidyverse , 2019, J. Open Source Softw..

[2]  Yi Guan,et al.  treeio: an R package for phylogenetic tree input and output with richly annotated and associated data. , 2019, Molecular biology and evolution.

[3]  Danwei Huang,et al.  Seagrass‐associated fungal communities show distance decay of similarity that has implications for seagrass management and restoration , 2019, Ecology and evolution.

[4]  J. Eisen,et al.  Characterization of the Mycobiome of the Seagrass, Zostera marina, Reveals Putative Associations With Marine Chytrids , 2019, bioRxiv.

[5]  D. Taşdemir,et al.  Rapid Metabolome and Bioactivity Profiling of Fungi Associated with the Leaf and Rhizosphere of the Baltic Seagrass Zostera marina , 2019, Marine drugs.

[6]  M. Réblová,et al.  Extensive sampling and high-throughput sequencing reveal Posidoniomycesatricolor gen. et sp. nov. (Aigialaceae, Pleosporales) as the dominant root mycobiont of the dominant Mediterranean seagrass Posidoniaoceanica , 2019, MycoKeys.

[7]  P. Ralph,et al.  Regional and Microenvironmental Scale Characterization of the Zostera muelleri Seagrass Microbiome , 2019, Front. Microbiol..

[8]  S. Van den Wyngaert,et al.  Fungi in aquatic ecosystems , 2019, Nature Reviews Microbiology.

[9]  Erik F. Y. Hom,et al.  Fungi in the Marine Environment: Open Questions and Unsolved Problems , 2019, mBio.

[10]  G. Chastagner,et al.  A Novel Phagomyxid Parasite Produces Sporangia in Root Hair Galls of Eelgrass (Zostera marina). , 2019, Protist.

[11]  Yi Guan,et al.  Two Methods for Mapping and Visualizing Associated Data on Phylogeny Using Ggtree. , 2018, Molecular biology and evolution.

[12]  M. Westenberg,et al.  Multiple Halophytophthora spp. and Phytophthora spp. including P. gemini, P. inundata and P. chesapeakensis sp. nov. isolated from the seagrass Zostera marina in the Northern hemisphere , 2018, European Journal of Plant Pathology.

[13]  A. Dubey,et al.  Diversity and Applications of Endophytic Actinobacteria of Plants in Special and Other Ecological Niches , 2018, Front. Microbiol..

[14]  Ontogenetic transition from specialized root hairs to specific root-fungus symbiosis in the dominant Mediterranean seagrass Posidonia oceanica , 2018, Scientific Reports.

[15]  G. Zahn,et al.  Seagrass‐associated fungal communities follow Wallace's line, but host genotype does not structure fungal community , 2018 .

[16]  Y. Hahn,et al.  Identification of Two Novel Amalgaviruses in the Common Eelgrass (Zostera marina) and in Silico Analysis of the Amalgavirus +1 Programmed Ribosomal Frameshifting Sites , 2018, The plant pathology journal.

[17]  Ryan S. Mueller,et al.  Metatranscriptomics and Amplicon Sequencing Reveal Mutualisms in Seagrass Microbiomes , 2018, Front. Microbiol..

[18]  N. McRoberts,et al.  Multiple origins of downy mildews and mito-nuclear discordance within the paraphyletic genus Phytophthora , 2018, PloS one.

[19]  M. Selosse,et al.  Time to re-think fungal ecology? Fungal ecological niches are often prejudged. , 2018, The New phytologist.

[20]  M. Kolařík,et al.  Fungal root symbionts of the seagrass Posidonia oceanica in the central Adriatic Sea revealed by microscopy, culturing and 454-pyrosequencing , 2017 .

[21]  Susan L. Williams,et al.  Microbiome succession during ammonification in eelgrass bed sediments , 2017, PeerJ.

[22]  K. Hyde,et al.  Life styles of Colletotrichum species and implications for plant biosecurity , 2017 .

[23]  J. Stachowicz,et al.  Microbial communities in sediment from Zostera marina patches, but not the Z. marina leaf or root microbiomes, vary in relation to distance from patch edge , 2017, PeerJ.

[24]  J. Eisen,et al.  Draft Genome Sequences of Pseudomonas moraviensis UCD-KL30, Vibrio ostreicida UCD-KL16, Colwellia sp. Strain UCD-KL20, Shewanella sp. Strain UCD-KL12, and Shewanella sp. Strain UCD-KL21, Isolated from Seagrass , 2017, Genome Announcements.

[25]  H. Schubert,et al.  Eelgrass Leaf Surface Microbiomes Are Locally Variable and Highly Correlated with Epibiotic Eukaryotes , 2017, bioRxiv.

[26]  J. Spatafora,et al.  Phylogenetic community structure of fungal endophytes in seagrass species , 2017 .

[27]  David K. Smith,et al.  ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data , 2017 .

[28]  J. Stachowicz,et al.  Global-Scale Structure of the Eelgrass Microbiome , 2016, Applied and Environmental Microbiology.

[29]  J. Eisen,et al.  Draft Genome Sequence of Tenacibaculum soleae UCD-KL19 , 2016, Genome Announcements.

[30]  T. Bouma,et al.  Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems , 2016, Proceedings of the Royal Society B: Biological Sciences.

[31]  G. Muyzer,et al.  Rhizosphere Microbiomes of European Seagrasses Are Selected by the Plant, But Are Not Species Specific , 2016, Front. Microbiol..

[32]  J. Eisen,et al.  Draft Genome Sequences of Two Pseudoalteromonas porphyrae Strains Isolated from Seagrass Sediment , 2016, Genome Announcements.

[33]  J. Eisen,et al.  Draft Genome Sequence of Cobetia sp. UCD-24C, Isolated from Roots and Leaves of the Seagrass Zostera marina , 2016, Genome Announcements.

[34]  P. Crous,et al.  All that glitters is not Ramularia , 2016, Studies in mycology.

[35]  J. Eisen,et al.  Draft Genome Sequences of Two Pseudoalteromonas Strains Isolated from Roots and Leaf Blades of the Seagrass Zostera marina , 2016, Genome Announcements.

[36]  J. Eisen,et al.  Draft Genome Sequences of Two Vibrio splendidus Strains, Isolated from Seagrass Sediment , 2016, Genome Announcements.

[37]  Zhongheng Zhang,et al.  Reshaping and aggregating data: an introduction to reshape package. , 2016, Annals of translational medicine.

[38]  M. Kolařík,et al.  Communities of Cultivable Root Mycobionts of the Seagrass Posidonia oceanica in the Northwest Mediterranean Sea Are Dominated by a Hitherto Undescribed Pleosporalean Dark Septate Endophyte , 2015, Microbial Ecology.

[39]  J. Eisen,et al.  Draft Genome Sequence of Bacillus vietnamensis Strain UCD-SED5 (Phylum Firmicutes) , 2015, Genome Announcements.

[40]  J. Eisen,et al.  Draft Genome Sequence of Pseudoalteromonas tetraodonis Strain UCD-SED8 (Phylum Gammaproteobacteria) , 2015, Genome Announcements.

[41]  M. Pivkin,et al.  Filamentous fungi associated with the seagrass Zostera marina Linnaeus, 1753 of Rifovaya Bay (Peter the Great Bay, the Sea of Japan) , 2015, Russian Journal of Marine Biology.

[42]  S. Suetrong,et al.  Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota , 2015, Fungal Diversity.

[43]  Qianqian Zhang,et al.  Seagrass (Zostera marina) Colonization Promotes the Accumulation of Diazotrophic Bacteria and Alters the Relative Abundances of Specific Bacterial Lineages Involved in Benthic Carbon and Sulfur Cycling , 2015, Applied and Environmental Microbiology.

[44]  Meilin Wu,et al.  Fungal Community Successions in Rhizosphere Sediment of Seagrasses Enhalus acoroides under PAHs Stress , 2015, International journal of molecular sciences.

[45]  David A. Coil,et al.  Swabs to genomes: a comprehensive workflow , 2015, PeerJ.

[46]  Anatomically and morphologically unique dark septate endophytic association in the roots of the Mediterranean endemic seagrass Posidonia oceanica , 2015, Mycorrhiza.

[47]  P. Colombo,et al.  Lulwoana sp., a dark septate endophyte in roots of Posidonia oceanica (L.) Delile seagrass. , 2015, Plant biology.

[48]  T. S. Suryanarayanan,et al.  Distribution and diversity of endophytes in seagrasses , 2015 .

[49]  Yang GuiLiu,et al.  Isolation, identification and bioactivity of endophytic Actinomycetes from mangrove plants in Beilun River. , 2015 .

[50]  A. Venkatachalam,et al.  Endophytic fungi of marine algae and seagrasses: a novel source of chitin modifying enzymes , 2015 .

[51]  A. Vizzini,et al.  Dothideomycetes and Leotiomycetes sterile mycelia isolated from the Italian seagrass Posidonia oceanica based on rDNA data , 2014, SpringerPlus.

[52]  Klong Luang,et al.  Diversity and antimicrobial activity of endophytic fungi isolated from the seagrass Enhalus acoroides , 2014 .

[53]  James R. Cole,et al.  Ribosomal Database Project: data and tools for high throughput rRNA analysis , 2013, Nucleic Acids Res..

[54]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[55]  S. Langenheder,et al.  The importance of species sorting differs between habitat generalists and specialists in bacterial communities. , 2014, FEMS microbiology ecology.

[56]  Dustin C. Sandberg,et al.  Fungal Endophytes of Aquatic Macrophytes: Diverse Host-Generalists Characterized by Tissue Preferences and Geographic Structure , 2014, Microbial Ecology.

[57]  J. Cebrian,et al.  Fungal endophytes of the seagrasses Halodule wrightii and Thalassia testudinum in the north-central Gulf of Mexico , 2013 .

[58]  S. Wyllie-Echeverria,et al.  Occurrence of rhizomal endophytes in three temperate northeast pacific seagrasses , 2013 .

[59]  S. Voyron,et al.  Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanica. , 2013, New biotechnology.

[60]  J. Sakayaroj,et al.  Antimicrobial Potential of Endophytic Fungi Derived from Three Seagrass Species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii , 2013, PloS one.

[61]  Susan Holmes,et al.  phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data , 2013, PloS one.

[62]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[63]  Ramón Doallo,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[64]  James W. Fourqurean,et al.  Seagrass ecosystems as a globally significant carbon stock , 2012 .

[65]  Elmar Pruesse,et al.  SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes , 2012, Bioinform..

[66]  Jolanta Miadlikowska,et al.  Host and geographic structure of endophytic and endolichenic fungi at a continental scale. , 2012, American journal of botany.

[67]  David L. Erickson,et al.  DNA Barcodes , 2012, Methods in Molecular Biology.

[68]  David L. Erickson,et al.  DNA barcodes: methods and protocols. , 2012, Methods in molecular biology.

[69]  J. Imhoff,et al.  Bio-mining the microbial treasures of the ocean: new natural products. , 2011, Biotechnology advances.

[70]  E. Jones Are there more marine fungi to be described? , 2011 .

[71]  H. Brouwer,et al.  Phytophthora gemini sp. nov., a new species isolated from the halophilic plant Zostera marina in the Netherlands. , 2011, Fungal biology.

[72]  G. Beakes,et al.  The evolutionary phylogeny of the oomycete “fungi” , 2011, Protoplasma.

[73]  E. Bornberg-Bauer,et al.  Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life , 2011, BMC Evolutionary Biology.

[74]  Mark A. Miller,et al.  Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).

[75]  Pedro M. Valero-Mora,et al.  ggplot2: Elegant Graphics for Data Analysis , 2010 .

[76]  C. Lévesque,et al.  Taxonomy, DNA barcoding and phylogeny of three new species of Pythium from Canada , 2010, Persoonia.

[77]  Bernard Henrissat,et al.  Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire , 2010, Genome Biology.

[78]  V. V. Kurilenko,et al.  Granulosicoccus coccoides sp. nov., isolated from leaves of seagrass (Zostera marina). , 2010, International journal of systematic and evolutionary microbiology.

[79]  E. Jones,et al.  Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand , 2010, Fungal Diversity.

[80]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[81]  Jonathan D. G. Jones,et al.  Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans , 2009, Nature.

[82]  J. Kolasa,et al.  Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. , 2009, Ecology.

[83]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[84]  L. Cerenius,et al.  Phylogenetic relationships among plant and animal parasites, and saprotrophs in Aphanomyces (Oomycetes). , 2009, Fungal genetics and biology : FG & B.

[85]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[86]  Hadley Wickham,et al.  Reshaping Data with the reshape Package , 2007 .

[87]  J. Tiedje,et al.  Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy , 2007, Applied and Environmental Microbiology.

[88]  Bess B. Ward,et al.  Diversity of Assimilatory Nitrate Reductase Genes From Plankton and Epiphytes Associated with a Seagrass Bed , 2007, Microbial Ecology.

[89]  Frederick T. Short,et al.  A Global Crisis for Seagrass Ecosystems , 2006 .

[90]  Peter M. Letcher,et al.  A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota) , 2006 .

[91]  Kenji Matsuura,et al.  Reconstructing the early evolution of Fungi using a six-gene phylogeny , 2006, Nature.

[92]  P. West Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: new challenges for an old problem , 2006 .

[93]  S. Mantelin,et al.  Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp. nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp. nov. and Phyllobacterium brassicacearum sp. nov. , 2006, International journal of systematic and evolutionary microbiology.

[94]  David M Rizzo,et al.  Phytophthora ramorum: integrative research and management of an emerging pathogen in California and Oregon forests. , 2005, Annual review of phytopathology.

[95]  J. Kuo Structural aspects of apoplast fungal hyphae in a marine angiosperm,Zostera muelleri Irmisch ex Aschers. (Zosteraceae) , 1984, Protoplasma.

[96]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[97]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[98]  P. Devarajan,et al.  Endophytic fungi associated with the tropical seagrass Halophila ovalis (Hydrocharitaceae) , 2002 .

[99]  Shawn W. Polson,et al.  Molecular diversity of diazotrophs in oligotrophic tropical seagrass bed communities. , 2002, FEMS microbiology ecology.

[100]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[101]  G. Holguin,et al.  Synergism between Phyllobacterium sp. (N(2)-fixer) and Bacillus licheniformis (P-solubilizer), both from a semiarid mangrove rhizosphere. , 2001, FEMS microbiology ecology.

[102]  W. Doolittle,et al.  A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.

[103]  D. Welsh Nitrogen fixation in seagrass meadows: Regulation, plant–bacteria interactions and significance to primary productivity , 2000 .

[104]  J. Palmer,et al.  Investigating Deep Phylogenetic Relationships among Cyanobacteria and Plastids by Small Subunit rRNA Sequence Analysis 1 , 1999, The Journal of eukaryotic microbiology.

[105]  W. Liesack,et al.  Desulfovibrio zosterae sp. nov., a new sulfate reducer isolated from surface-sterilized roots of the seagrass Zostera marina. , 1999, International journal of systematic bacteriology.

[106]  Michelle Waycott,et al.  Phylogenetic Studies in Alismatidae, II: Evolution of Marine Angiosperms (Seagrasses) and Hydrophily , 1997 .

[107]  G. Holguin,et al.  Two new nitrogen-fixing bacteria from the rhizosphere of mangrove trees: Their isolation, identification and in vitro interaction with rhizosphere Staphylococcus sp. , 1992 .

[108]  F. Short,et al.  Labyrinthula zosterae sp. nov., the causative agent of wasting disease of eelgrass, Zostera marina , 1991 .

[109]  M. Cubeta Characterization of anastomosis groups of binucleate Rhizoctonia species using restriction analysis of an amplified ribosomal RNA gene , 1991 .

[110]  D. Lane 16S/23S rRNA sequencing , 1991 .

[111]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[112]  R. Vilgalys,et al.  Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species , 1990, Journal of bacteriology.

[113]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[114]  F. Cinelli,et al.  Fungal flora of Posidonia oceanica and its ecological significance , 1985 .

[115]  D. Capone,et al.  Nitrogen Fixation Associated with Rinsed Roots and Rhizomes of the Eelgrass Zostera marina. , 1982, Plant physiology.

[116]  D. Capone Nitrogen Fixation (Acetylene Reduction) by Rhizosphere Sediments of the Eelgrass Zostera marina , 1982 .

[117]  S. Y. Newell Fungi and Bacteria in or on Leaves of Eelgrass (Zostera marina L.) from Chesapeake Bay , 1981, Applied and environmental microbiology.