Diverse spatial expression patterns emerge from common transcription bursting kinetics

In early development, regulation of transcription results in precisely positioned and highly reproducible expression patterns that specify cellular identities. How transcription, a fundamentally noisy molecular process, is regulated to achieve reliable embryonic patterning remains unclear. In particular, it is unknown how gene-specific regulation mechanisms affect kinetic rates of transcription, and whether there are common, global features that govern these rates across a genetic network. Here, we measure nascent transcriptional activity in the gap gene network of early Drosophila embryos and characterize the variability in absolute activity levels across expression boundaries. We demonstrate that boundary formation follows a common transcriptional principle: a single control parameter determines the distribution of transcriptional activity, regardless of gene identity, boundary position, or enhancer-promoter architecture. By employing a minimalist model of transcription, we infer kinetic rates of transcriptional bursting for these patterning genes; we find that the key regulatory parameter is the fraction of time a gene is in an actively transcribing state, while the rate of Pol II loading appears globally conserved. These results point to a universal simplicity underlying the apparently complex transcriptional processes responsible for early embryonic patterning and indicate a path to general rules in transcriptional regulation.

[1]  M. Levine,et al.  Spatial regulation of the gap gene giant during Drosophila development. , 1991, Development.

[2]  Brian Munsky,et al.  Transcription Factors Modulate c-Fos Transcriptional Bursts , 2014, Cell reports.

[3]  Michael Levine,et al.  Multiple enhancers ensure precision of gap gene-expression patterns in the Drosophila embryo , 2011, Proceedings of the National Academy of Sciences.

[4]  Mads Kærn,et al.  Noise in eukaryotic gene expression , 2003, Nature.

[5]  Corentin Spriet,et al.  Concurrent Fast and Slow Cycling of a Transcriptional Activator at an Endogenous Promoter , 2008, Science.

[6]  David H. Sharp,et al.  Canalization of Gene Expression in the Drosophila Blastoderm by Gap Gene Cross Regulation , 2009, PLoS biology.

[7]  Hernan G. Garcia,et al.  Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos , 2014, Proceedings of the National Academy of Sciences.

[8]  Julien O. Dubuis,et al.  Accurate measurements of dynamics and reproducibility in small genetic networks , 2013, Molecular systems biology.

[9]  Ido Golding,et al.  Stochastic Kinetics of Nascent RNA. , 2016, Physical review letters.

[10]  B. Dickson,et al.  Genome-scale functional characterization of Drosophila developmental enhancers in vivo , 2014, Nature.

[11]  Shawn C. Little,et al.  Precise Developmental Gene Expression Arises from Globally Stochastic Transcriptional Activity , 2013, Cell.

[12]  James Briscoe,et al.  Morphogen rules: design principles of gradient-mediated embryo patterning , 2015, Development.

[13]  M Hoch,et al.  cis‐acting control elements for Krüppel expression in the Drosophila embryo. , 1990, The EMBO journal.

[14]  John Reinitz,et al.  Bicoid cooperative DNA binding is critical for embryonic patterning in Drosophila. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Danyang Yu,et al.  Precise Registration of Gene Expression Boundaries by a Repressive Morphogen in Drosophila , 2008, Current Biology.

[16]  Robert Tjian,et al.  Looping Back to Leap Forward: Transcription Enters a New Era , 2014, Cell.

[17]  G. Hager,et al.  Complex dynamics of transcription regulation. , 2012, Biochimica et biophysica acta.

[18]  Dmitri Papatsenko,et al.  The role of binding site cluster strength in Bicoid-dependent patterning in Drosophila. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. Sather,et al.  Analysis of Krüppel control elements reveals that localized expression results from the interaction of multiple subelements. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Ty C. Voss,et al.  Dynamic regulation of transcriptional states by chromatin and transcription factors , 2013, Nature Reviews Genetics.

[21]  T. Tabata,et al.  Segmentation of the Drosophila embryo. , 1993, Current opinion in genetics & development.

[22]  Christophe Zimmer,et al.  A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting , 2016, Nature Communications.

[23]  D. Tranchina,et al.  Stochastic mRNA Synthesis in Mammalian Cells , 2006, PLoS biology.

[24]  Hernan G. Garcia,et al.  The embryo as a laboratory: quantifying transcription in Drosophila. , 2014, Trends in genetics : TIG.

[25]  P. O’Farrell,et al.  Illuminating DNA replication during Drosophila development using TALE-lights , 2014, Current Biology.

[26]  Glenn Vinnicombe,et al.  Noise in Gene Regulatory Networks , 2008, IEEE Transactions on Automatic Control.

[27]  M. Elowitz,et al.  Functional roles for noise in genetic circuits , 2010, Nature.

[28]  David H. Sharp,et al.  Dynamic control of positional information in the early Drosophila embryo , 2004, Nature.

[29]  Eric F. Wieschaus,et al.  The Formation of the Bicoid Morphogen Gradient Requires Protein Movement from Anteriorly Localized mRNA , 2011, PLoS biology.

[30]  Johannes Jaeger,et al.  Cellular and Molecular Life Sciences REVIEW The gap gene network , 2022 .

[31]  Gasper Tkacik,et al.  Positional information, in bits , 2010, Proceedings of the National Academy of Sciences.

[32]  E. Cox,et al.  Real-Time Kinetics of Gene Activity in Individual Bacteria , 2005, Cell.

[33]  E. O’Shea,et al.  Noise in protein expression scales with natural protein abundance , 2006, Nature Genetics.

[34]  Claude Desplan,et al.  Synergy between the hunchback and bicoid morphogens is required for anterior patterning in Drosophila , 1994, Cell.

[35]  J. McNally,et al.  Single molecule analysis of transcription factor binding at transcription sites in live cells , 2014, Nature Communications.

[36]  Michael Levine,et al.  Rapid Rates of Pol II Elongation in the Drosophila Embryo , 2017, Current Biology.

[37]  Felix Naef,et al.  Structure of silent transcription intervals and noise characteristics of mammalian genes , 2015, Molecular systems biology.

[38]  Dan S. Tawfik,et al.  Noise–mean relationship in mutated promoters , 2012, Genome research.

[39]  Wolfgang Driever,et al.  Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen , 1989, Nature.

[40]  Andrew Mugler,et al.  Analytic methods for modeling stochastic regulatory networks. , 2010, Methods in molecular biology.

[41]  W. Bialek,et al.  The Role of Input Noise in Transcriptional Regulation , 2006, PloS one.

[42]  R. Singer,et al.  Transcription goes digital , 2012, EMBO reports.

[43]  X. Xie,et al.  Single Molecule Imaging of Transcription Factor Binding to DNA in Live Mammalian Cells , 2013, Nature Methods.

[44]  Paul J. Choi,et al.  Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells , 2010, Science.

[45]  D. Larson,et al.  Single-RNA counting reveals alternative modes of gene expression in yeast , 2008, Nature Structural &Molecular Biology.

[46]  Peter A. Lawrence,et al.  Control of Drosophila body pattern by the hunchback morphogen gradient , 1992, Cell.

[47]  A. van Oudenaarden,et al.  Using Gene Expression Noise to Understand Gene Regulation , 2012, Science.

[48]  E. Segal,et al.  Predicting expression patterns from regulatory sequence in Drosophila segmentation , 2008, Nature.

[49]  Hernan G. Garcia,et al.  Quantitative Imaging of Transcription in Living Drosophila Embryos Links Polymerase Activity to Patterning , 2013, Current Biology.

[50]  J. Elf,et al.  Probing Transcription Factor Dynamics at the Single-Molecule Level in a Living Cell , 2007, Science.

[51]  M. Khammash,et al.  The finite state projection algorithm for the solution of the chemical master equation. , 2006, The Journal of chemical physics.

[52]  Gašper Tkačik,et al.  Noise and information transmission in promoters with multiple internal States. , 2013, Biophysical journal.

[53]  R. Milo,et al.  Noise in gene expression is coupled to growth rate , 2015, Genome research.

[54]  H. Jäckle,et al.  Heterodimeric Drosophila gap gene protein complexes acting as transcriptional repressors. , 1995, The EMBO journal.

[55]  J. Peccoud,et al.  Markovian Modeling of Gene-Product Synthesis , 1995 .

[56]  Roger B. Sidje,et al.  Expokit: a software package for computing matrix exponentials , 1998, TOMS.

[57]  D. Hebenstreit Are gene loops the cause of transcriptional noise? , 2013, Trends in genetics : TIG.

[58]  F. Tostevin,et al.  The Berg-Purcell limit revisited. , 2014, Biophysical journal.

[59]  Siqi Wu,et al.  Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks , 2016, Proceedings of the National Academy of Sciences.

[60]  Jane Kondev,et al.  Regulation of noise in gene expression. , 2013, Annual review of biophysics.

[61]  Sandeep Choubey,et al.  Deciphering Transcriptional Dynamics In Vivo by Counting Nascent RNA Molecules , 2013, PLoS Comput. Biol..

[62]  J. Fak,et al.  Transcriptional Control in the Segmentation Gene Network of Drosophila , 2004, PLoS biology.

[63]  M Hoch,et al.  Spatial control of the gap gene knirps in the Drosophila embryo by posterior morphogen system. , 1992, Science.

[64]  Rob Phillips,et al.  Promoter architecture dictates cell-to-cell variability in gene expression , 2014, Science.

[65]  Jané Kondev,et al.  Transcriptional control of noise in gene expression , 2008, Proceedings of the National Academy of Sciences.

[66]  Nacho Molina,et al.  Mammalian Genes Are Transcribed with Widely Different Bursting Kinetics , 2011, Science.

[67]  D. Larson,et al.  Direct observation of frequency modulated transcription in single cells using light activation , 2013, eLife.