Convergence of an iterative algorithm for Teichmüller maps via harmonic energy optimization

Finding surface mappings with least distortion arises from many applications in various fields. Extremal Teichmüller maps are surface mappings with least conformality distortion. The existence and uniqueness of the extremal Teichmüller map between Riemann surfaces of finite type are theoretically guaranteed (see Fletcher and Markovic, Quasiconformal maps and Teichmüller theory, Oxford Graduate Texts in Math., vol. 11, Oxford University Press, Oxford, 2007). Recently, a simple iterative algorithm for computing the Teichmüller maps between connected Riemann surfaces with given boundary value was proposed by Lui, Lam, Yau, and Gu in Teichmüller extremal mapping and its applications to landmark matching registration, arXiv:1211.2569. Numerical results were reported in the paper to show the effectiveness of the algorithm. The method was successfully applied to landmarkmatching registration. The purpose of this paper is to prove the iterative algorithm proposed in loc. cit., indeed converges.

[1]  Vladimir Markovic,et al.  Quasiconformal Maps and Teichmüller Theory , 2006 .

[2]  Christopher C. Green,et al.  Conformal Mappings to Multiply Connected Polycircular Arc Domains , 2012 .

[3]  Thomas K. DeLillo,et al.  Efficient Calculation of Schwarz–Christoffel Transformations for Multiply Connected Domains Using Laurent Series , 2013 .

[4]  Lok Ming Lui,et al.  Brain Surface Conformal Parameterization Using Riemann Surface Structure , 2007, IEEE Transactions on Medical Imaging.

[5]  Thomas K. DeLillo,et al.  Numerical Computation of the Schwarz-Christoffel Transformation for Multiply Connected Domains , 2011, SIAM J. Sci. Comput..

[6]  Nicholas Hale,et al.  Conformal Maps to Multiply Slit Domains and Applications , 2009, SIAM J. Sci. Comput..

[7]  Guillermo Sapiro,et al.  Conformal Surface Parameterization for Texture Mapping , 1999 .

[8]  Olli Lehto,et al.  Quasiconformal mappings in the plane , 1973 .

[9]  Erratum: Numerical Computation of the Schwarz–Christoffel Transformation , 1980 .

[10]  Monica K. Hurdal,et al.  Discrete conformal methods for cortical brain flattening , 2009, NeuroImage.

[11]  L. Trefethen Numerical computation of the Schwarz-Christoffel transformation , 1979 .

[12]  D. Crowdy Conformal slit maps in applied mathematics , 2012 .

[13]  Kurt Strebel,et al.  On quasiconformal mappings of open Riemann surfaces , 1978 .

[14]  Paul M. Thompson,et al.  Genus zero surface conformal mapping and its application to brain surface mapping , 2004, IEEE Transactions on Medical Imaging.

[15]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[16]  Lok Ming Lui,et al.  Teichmüller extremal mapping and its applications to landmark matching registration , 2012, ArXiv.

[17]  R. MICHAEL PORTER,et al.  An Interpolating Polynomial Method for Numerical Conformal Mapping , 2001, SIAM J. Sci. Comput..

[18]  Darren Crowdy,et al.  Conformal Mappings between Canonical Multiply Connected Domains , 2006 .

[19]  Lloyd N. Trefethen,et al.  Schwarz-Christoffel Mapping , 2002 .

[20]  F. P. Gardiner,et al.  Quasiconformal Teichmuller Theory , 1999 .

[21]  Chapter 3 – Extremal Quasiconformal Mappings of the Disk , 2002 .