Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review

This paper reviews the many developments in estimates of the direct and indirect global annual mean radiative forcing due to present‐day concentrations of anthropogenic tropospheric aerosols since Intergovernmental Panel on Climate Change [1996]. The range of estimates of the global mean direct radiative forcing due to six distinct aerosol types is presented. Additionally, the indirect effect is split into two components corresponding to the radiative forcing due to modification of the radiative properties of clouds (cloud albedo effect) and the effects of anthropogenic aerosols upon the lifetime of clouds (cloud lifetime effect). The radiative forcing for anthropogenic sulphate aerosol ranges from −0.26 to −0.82 W m−2. For fossil fuel black carbon the radiative forcing ranges from +0.16 W m−2 for an external mixture to +0.42 W m−2 for where the black carbon is modeled as internally mixed with sulphate aerosol. For fossil fuel organic carbon the two estimates of the likely weakest limit of the direct radiative forcing are −0.02 and −0.04 W m−2. For biomass‐burning sources of black carbon and organic carbon the combined radiative forcing ranges from −0.14 to −0.74 W m−2. Estimates of the radiative forcing due to mineral dust vary widely from +0.09 to −0.46 W m−2; even the sign of the radiative forcing is not well established due to the competing effects of solar and terrestrial radiative forcings. A single study provides a very tentative estimate of the radiative forcing of nitrates to be −0.03 W m−2. Estimates of the cloud albedo indirect radiative forcing range from −0.3 to approximately −1.8 W m−2. Although the cloud lifetime effect is identified as a potentially important climate forcing mechanism, it is difficult to quantify in the context of the present definition of radiative forcing of climate change and current model simulations. This is because its estimation by general circulation models necessarily includes some level of cloud and water vapor feedbacks, which affect the hydrological cycle and the dynamics of the atmosphere. Available models predict that the radiative flux perturbation associated with the cloud lifetime effect is of a magnitude similar to that of the cloud albedo effect.

[1]  Syukuro Manabe,et al.  Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity , 1967 .

[2]  S. Twomey Pollution and the Planetary Albedo , 1974 .

[3]  Veerabhadran Ramanathan,et al.  Climate modeling through radiative‐convective models , 1978 .

[4]  J. Hansen,et al.  Climate Impact of Increasing Atmospheric Carbon Dioxide , 1981, Science.

[5]  L. Jenne,et al.  Global distribution of total cloud cover and cloud type amounts over land , 1986 .

[6]  Yoram J. Kaufman,et al.  Satellite sensing of aerosol absorption , 1987 .

[7]  J. Coakley,et al.  Effect of Ship-Stack Effluents on Cloud Reflectivity , 1987, Science.

[8]  R. Chervin,et al.  Global distribution of total cloud cover and cloud type amounts over the ocean , 1988 .

[9]  M. Desbois,et al.  The Potential of Infrared Satellite Data for the Retrieval of Saharan-Dust Optical Depth over Africa. , 1989 .

[10]  S. Warren,et al.  Light-Absorbing Material Extracted From Cloud Droplets and Its Effect on Cloud Albedo , 1989 .

[11]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[12]  M. King,et al.  Direct and Remote Sensing Observations of the Effects of Ships on Clouds , 1989, Science.

[13]  Henning Rodhe,et al.  A global three-dimensional model of the tropospheric sulfur cycle , 1991 .

[14]  Steven A. Ackerman,et al.  Radiative Effects of Airborne Dust on Regional Energy Budgets at the Top of the Atmosphere , 1992 .

[15]  George A. Isaac,et al.  The relationship between cloud droplet number concentrations and anthropogenic pollution : observations and climatic implications , 1992 .

[16]  Christine A. O'Neill,et al.  Effects of Aerosol from Biomass Burning on the Global Radiation Budget , 1992, Science.

[17]  J. Coakley,et al.  Climate Forcing by Anthropogenic Aerosols , 1992, Science.

[18]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..

[19]  Didier Tanré,et al.  Satellite Climatology of Saharan Dust Outbreaks: Method and Preliminary Results , 1992 .

[20]  H. Horvath Atmospheric light absorption : a review , 1993 .

[21]  J. Kiehl,et al.  The Relative Roles of Sulfate Aerosols and Greenhouse Gases in Climate Forcing , 1993, Science.

[22]  I. Sokolik,et al.  Complex refractive index of atmospheric dust aerosols , 1993 .

[23]  Kevin P. Gallo,et al.  A new perspective on recent global warming: asymmetric trends of daily maximum and minimum temperature , 1993 .

[24]  P. Hobbs,et al.  Light scattering and cloud condensation nucleus activity of sulfate aerosol measured over the northeast Atlantic Ocean , 1993 .

[25]  Hélène Cachier,et al.  Optical and thermal measurements of black carbon aerosol content in different environments: Variation of the specific attenuation cross-section, sigma (σ) , 1993 .

[26]  T. Vesala,et al.  The effect of atmospheric nitric acid vapor on cloud condensation nucleus activation , 1993 .

[27]  Joyce E. Penner,et al.  Towards the development of a global inventory for black carbon emissions , 1993 .

[28]  J. Penner,et al.  Large contribution of organic aerosols to cloud-condensation-nuclei concentrations , 1993, Nature.

[29]  Yoram J. Kaufman,et al.  Effect of Amazon smoke on cloud microphysics and albedo - analysis from satellite imagery , 1993 .

[30]  D. L. Roberts,et al.  A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols , 1994, Nature.

[31]  R. Pincus,et al.  Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer , 1994, Nature.

[32]  A. Lacis,et al.  Near-Global Survey of Effective Droplet Radii in Liquid Water Clouds Using ISCCP Data. , 1994 .

[33]  S. Twomey,et al.  Determining the Susceptibility of Cloud Albedo to Changes in Droplet Concentration with the Advanced Very High Resolution Radiometer , 1994 .

[34]  S. Bakan,et al.  Contrail frequency over Europe from NOAA-satellite images , 1994 .

[35]  J. Penner,et al.  Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols , 1994 .

[36]  C. F. Rogers,et al.  The effect of anthropogenic sulfate aerosols on marine cloud droplet concentrations , 1994 .

[37]  D. W. Johnson,et al.  The Measurement and Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds , 1994 .

[38]  J. P. Taylor,et al.  Measurements of Cloud Susceptibility , 1994 .

[39]  Olivier Boucher,et al.  General circulation model assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry , 1995 .

[40]  P. Chylek,et al.  Effect of absorbing aerosols on global radiation budget , 1995 .

[41]  Inez Y. Fung,et al.  Contribution to the atmospheric mineral aerosol load from land surface modification , 1995 .

[42]  T. Vesala,et al.  Changes in cloud properties due to NOx emissions , 1995 .

[43]  John H. Seinfeld,et al.  Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition , 1995 .

[44]  Olivier Boucher,et al.  The sulfate‐CCN‐cloud albedo effect , 1995 .

[45]  Stephen E. Schwartz,et al.  Climate response to radiative forcings by sulfate aerosols and greenhouse gases , 1995 .

[46]  Stephen E. Schwartz,et al.  Direct shortwave forcing of climate by the anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity , 1995 .

[47]  Jeffrey T. Kiehl,et al.  Modeling geographical and seasonal forcing due to aerosols , 1995 .

[48]  O. Boucher GCM Estimate of the Indirect Aerosol Forcing Using Satellite-Retrieved Cloud Droplet Effective Radii , 1995 .

[49]  G. Brasseur,et al.  A three-dimensional study of the tropospheric sulfur cycle , 1995 .

[50]  J. Haywood,et al.  The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget , 1995 .

[51]  Makiko Sato,et al.  Long-term changes of the diurnal temperature cycle: implications about mechanisms of global climate change , 1995 .

[52]  H. Treut,et al.  Precipitation and radiation modeling in a general circulation model: Introduction of cloud microphysical processes , 1995 .

[53]  P. Chylek,et al.  Effect of black carbon on the optical properties and climate forcing of sulfate aerosols , 1995 .

[54]  R. J. Flowerdew,et al.  Retrieval of aerosol optical thickness over land using the ATSR‐2 Dual‐Look Satellite Radiometer , 1996 .

[55]  P. Chylek,et al.  Black carbon and absorption of solar radiation by clouds , 1996 .

[56]  Mian Chin,et al.  Anthropogenic and natural contributions to tropospheric sulfate: A global model analysis , 1996 .

[57]  Thomas E. Graedel,et al.  Global gridded inventories of anthropogenic emissions of sulfur and nitrogen , 1996 .

[58]  J. Veefkind,et al.  Nephelometer derived and directly measured aerosol optical depth of the atmospheric boundary layer , 1996 .

[59]  J. Lelieveld,et al.  Role of mineral aerosol as a reactive surface in the global troposphere , 1996 .

[60]  J. Wilson,et al.  A global black carbon aerosol model , 1996 .

[61]  P. Chylek,et al.  Black carbon: Atmospheric concentrations and cloud water content measurements over southern Nova Scotia , 1996 .

[62]  A. Slingo,et al.  Enhanced shortwave cloud radiative forcing due to anthropogenic aerosols , 1996 .

[63]  Irina N. Sokolik,et al.  Direct radiative forcing by anthropogenic airborne mineral aerosols , 1996, Nature.

[64]  A. Slingo,et al.  Predicting cloud‐droplet effective radius and indirect sulphate aerosol forcing using a general circulation model , 1996 .

[65]  Z. Levin,et al.  The Effects of Desert Particles Coated with Sulfate on Rain Formation in the Eastern Mediterranean , 1996 .

[66]  D. Lilly,et al.  Evaluation of sulfate aerosols indirect effect in marine stratocumulus clouds using observation-derived cloud climatology , 1996 .

[67]  M. Garstang,et al.  Temporal and spatial characteristics of Saharan dust outbreaks , 1996 .

[68]  U. Lohmann,et al.  The sulfate-CCN-cloud albedo effect: a sensitivity study with two general circulation models , 1996 .

[69]  J. Penner,et al.  The contribution of carbonaceous aerosols to climate change , 1996 .

[70]  C. Corrigan,et al.  Cloud condensation nucleus activity of the organic component of biomass smoke particles , 1996 .

[71]  D. Randall,et al.  Liquid and Ice Cloud Microphysics in the CSU General Circulation Model. Part 1: Model Description and Simulated Microphysical Processes , 1996 .

[72]  On the sensitivity of cloud albedo to the partitioning of particulate absorbers in cloudy air , 1996 .

[73]  Andrew A. Lacis,et al.  Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol , 1996 .

[74]  A. Lacis,et al.  The influence on climate forcing of mineral aerosols from disturbed soils , 1996, Nature.

[75]  J. Penner,et al.  A global three‐dimensional model study of carbonaceous aerosols , 1996 .

[76]  A. Jones,et al.  Climate model studies of sulphate aerosols and clouds , 1997 .

[77]  Larry L. Stowe,et al.  Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product , 1997 .

[78]  J. Feichter,et al.  Effect of black carbon and sulfate aerosols on the Global Radiation Budget , 1997 .

[79]  S. Ackerman Remote sensing aerosols using satellite infrared observations , 1997 .

[80]  P. Bhartia,et al.  Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data , 1997 .

[81]  J. Roujean,et al.  Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS , 1997 .

[82]  V Soufflet Remote sensing of aerosols over boreal forest and lake water from AVHRR data , 1997 .

[83]  Michael J. Barnsley,et al.  Global retrieval of bidirectional reflectance and albedo over land , 1997 .

[84]  Makiko Sato,et al.  The missing climate forcing , 1997 .

[85]  P. Hobbs,et al.  Airborne measurements of carbonaceous aerosols on the East Coast of the United States , 1997 .

[86]  Joyce E. Penner,et al.  An assessment of the radiative effects of anthropogenic sulfate , 1997 .

[87]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[88]  M. Kulmala,et al.  Supercooled cirrus cloud formation modified by nitric acid pollution of the upper troposphere , 1997 .

[89]  Jos Lelieveld,et al.  Radiative forcing due to tropospheric ozone and sulfate aerosols , 1997 .

[90]  F. Bréon,et al.  Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements , 1997 .

[91]  L. Ruby Leung,et al.  Prediction of cloud droplet number in a general , 1997 .

[92]  D. Tanré,et al.  Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances , 1997 .

[93]  Philip B. Russell,et al.  Chemical apportionment of aerosol column optical depth off the mid‐Atlantic coast of the United States , 1997 .

[94]  D. Lilly,et al.  Cloud factor and seasonality of the indirect effect of anthropogenic sulfate aerosols , 1997 .

[95]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[96]  J. Feichter,et al.  Volcanic sulfur emissions: Estimates of source strength and its contribution to the global sulfate distribution , 1997 .

[97]  Menner A. Tatang,et al.  Uncertainty analysis of indirect radiative forcing by anthropogenic sulfate aerosols , 1997 .

[98]  M. Mishchenko,et al.  Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids , 1997 .

[99]  François Dulac,et al.  Long‐term daily monitoring of Saharan dust load over ocean using Meteosat ISCCP‐B2 data: 1. Methodology and preliminary results for 1983–1994 in the Mediterranean , 1997 .

[100]  J. Penner,et al.  Modeling the spectral optical properties of ammonium sulfate and biomass burning aerosols , 1997 .

[101]  J. Haywood,et al.  Multi‐spectral calculations of the direct radiative forcing of tropospheric sulphate and soot aerosols using a column model , 1997 .

[102]  Gerard P. A. Kos,et al.  Composition/size of the light-scattering aerosol in the Netherlands , 1997 .

[103]  V. Ramaswamy,et al.  Climate forcing‐response relationships for greenhouse and shortwave radiative perturbations , 1997 .

[104]  U. Lohmann,et al.  Impact of sulfate aerosols on albedo and lifetime of clouds: A sensitivity study with the ECHAM4 GCM , 1997 .

[105]  A. Slingo,et al.  General Circulation Model Calculations of the Direct Radiative Forcing by Anthropogenic Sulfate and Fossil-Fuel Soot Aerosol , 1997 .

[106]  Robert A. Kotchenruther,et al.  Direct Radiative Forcing by Smoke from Biomass Burning , 1997, Science.

[107]  P. Kasibhatla,et al.  A three-dimensional global model investigation of seasonal variations in the atmospheric burden of anthropogenic , 1997 .

[108]  The potential impact of soot particles from aircraft exhaust on cirrus clouds , 1997 .

[109]  U. Lohmann,et al.  The atmospheric sulfur cycle in ECHAM-4 and its impact on the shortwave radiation , 1997 .

[110]  Y. Kaufman,et al.  The effect of smoke particles on clouds and climate forcing , 1997 .

[111]  Mian Chin,et al.  Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results , 1997 .

[112]  T. Berntsen,et al.  Global distribution of sulphate in the troposphere: A three-dimensional model study , 1998 .

[113]  J. Ström,et al.  In situ measurements of enhanced crystal number densities in cirrus clouds caused by aircraft exhaust , 1998 .

[114]  A possible change in cloud radiative forcing due to aircraft exhaust , 1998 .

[115]  A. Nenes,et al.  Marginal direct climate forcing by atmospheric aerosols , 1998 .

[116]  J. Vanderlei Martins,et al.  Sphericity and morphology of smoke particles from biomass burning in Brazil , 1998 .

[117]  Liam E. Gumley,et al.  Infrared spectral absorption of nearly invisible cirrus clouds , 1998 .

[118]  H. Treut,et al.  Sulfate Aerosol Indirect Effect and CO2 Greenhouse Forcing: EquilibriumResponse of the LMD GCM and Associated Cloud Feedbacks , 1998 .

[119]  Robert Sausen,et al.  A Diagnostic Study of the Global Distribution of Contrails Part I: Present Day Climateast; , 1998 .

[120]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[121]  S. Ghan,et al.  Competition between Sea Salt and Sulfate Particles as Cloud Condensation Nuclei , 1998 .

[122]  A. Kirkevåg,et al.  Intercomparison of models representing direct shortwave radiative forcing by sulfate aerosols , 1998 .

[123]  S. Schwartz,et al.  Apportionment of light scattering and hygroscopic growth to aerosol composition , 1998 .

[124]  Martin Wild,et al.  The radiative impact of a simple aerosol climatology on the Hadley Centre atmospheric GCM , 1998 .

[125]  V. Ramaswamy,et al.  Reply [to “Comments on ‘A limited‐area‐model case study of the effects of sub‐grid scale variations in relative humidity and cloud upon the direct radiative forcing of sulfate aerosol’”] , 1998 .

[126]  Yoram J. Kaufman,et al.  Retrieval of the real part of the refractive index of smoke particles from Sun/sky measurements during SCAR‐B , 1998 .

[127]  Thomas F. Eck,et al.  Measurements of irradiance attenuation and estimation of aerosol single scattering albedo for biomass burning aerosols in Amazonia , 1998 .

[128]  John L. Ross,et al.  Radiative characteristics of regional hazes dominated by smoke from biomass burning in Brazil: Closure tests and direct radiative forcing , 1998 .

[129]  Effect of clouds on direct aerosol radiative forcing of climate , 1998 .

[130]  Uncertainties in assessing radiative forcing by mineral dust , 1998 .

[131]  S. Kreidenweis,et al.  Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer , 1998, Nature.

[132]  C. C. Chuang,et al.  Climate forcing by carbonaceous and sulfate aerosols , 1998 .

[133]  Ina Tegen,et al.  Climate Response to Soil Dust Aerosols , 1998 .

[134]  Gerrit de Leeuw,et al.  Retrieval of aerosol optical depth over land using two‐angle view satellite radiometry during TARFOX , 1998 .

[135]  V. Ramaswamy,et al.  Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols , 1998 .

[136]  T. Nakajima,et al.  A use of two‐channel radiances for an aerosol characterization from space , 1998 .

[137]  Irina N. Sokolik,et al.  Modeling the radiative characteristics of airborne mineral aerosols at infrared wavelengths , 1998 .

[138]  Zhanqing Li,et al.  The direct radiative effect of smoke aerosols on atmospheric absorption of visible sunlight , 1998 .

[139]  A Lacis,et al.  Climate forcings in the industrial era. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[140]  R. Welch,et al.  Global variation of column droplet concentration in low‐level clouds , 1998 .

[141]  François-Marie Bréon,et al.  Cloud droplet effective radius from spaceborne polarization measurements , 1998 .

[142]  Estimation of the direct radiative forcing due to sulfate and soot aerosols , 1998 .

[143]  Yoram J. Kaufman,et al.  Biomass burning aerosol size distribution and modeled optical properties , 1998 .

[144]  J. Lelieveld,et al.  Simulation of global sulfate distribution and the influence on effective cloud drop radii with a coupled photochemistry sulfur cycle model , 1998 .

[145]  R. Welch,et al.  Global Survey of the Relationships of Cloud Albedo and Liquid Water Path with Droplet Size Using ISCCP , 1998 .

[146]  Yoram J. Kaufman,et al.  Single-scattering albedo of smoke retrieved from the sky radiance and solar transmittance measured from ground , 1998 .

[147]  O. Boucher Air traffic may increase cirrus cloudiness , 1999, Nature.

[148]  Jonathan P. Taylor,et al.  Aircraft observations and modeling of sky radiance distributions from aerosol during TARFOX , 1999 .

[149]  C. O'Dowd,et al.  Coupling sea‐salt and sulphate interactions and its impact on cloud droplet concentration predictions , 1999 .

[150]  Didier Tanré,et al.  Validation of the first algorithm applied for deriving the aerosol properties over the ocean using the POLDER/ADEOS measurements , 1999, IEEE Trans. Geosci. Remote. Sens..

[151]  D. Tanré,et al.  Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future. , 1999 .

[152]  C. Liousse,et al.  Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model , 1999 .

[153]  Didier Tanré,et al.  Characterization of aerosols over ocean from POLDER/ADEOS‐1 , 1999 .

[154]  U. Schumann,et al.  Radiative forcing by contrails , 1999 .

[155]  Ramaswamy,et al.  Tropospheric Aerosol Climate Forcing in Clear-Sky Satellite Observations over the Oceans. , 1999, Science.

[156]  U. Lohmann,et al.  Tropospheric sulfur cycle in the Canadian general circulation model , 1999 .

[157]  N. McFarlane,et al.  The mineral dust aerosol cycle during the Last Glacial Maximum , 1999 .

[158]  Piers M. Forster,et al.  The effect of human activity on radiative forcing of climate change: a review of recent developments , 1999 .

[159]  D. Rosenfeld TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall , 1999 .

[160]  Teruyuki Nakajima,et al.  Development of a Two-Channel Aerosol Retrieval Algorithm on a Global Scale Using NOAA AVHRR , 1999 .

[161]  Philip B. Russell,et al.  Aerosol optical depth retrieval using ATSR-2 and AVHRR data during TARFOX , 1999 .

[162]  Robert Frouin,et al.  Early phase analysis of OCTS radiance data for aerosol remote sensing , 1999, IEEE Trans. Geosci. Remote. Sens..

[163]  Ulrike Lohmann,et al.  Erratum: ``Prediction of the number of cloud droplets in the ECHAM GCM'' , 1999 .

[164]  Y. Balkanski,et al.  Modeling the mineralogy of atmospheric dust sources , 1999 .

[165]  John H. Seinfeld,et al.  Global concentrations of tropospheric sulfate, nitrate, and ammonium aerosol simulated in a general circulation model , 1999 .

[166]  D. Tanré,et al.  Retrieval of aerosol optical thickness and size distribution over ocean from the MODIS airborne simulator during TARFOX , 1999 .

[167]  Hermann Mannstein,et al.  Operational detection of contrails from NOAA-AVHRR-data , 1999 .

[168]  Patrick Minnis,et al.  Global distribution of contrail radiative forcing , 1999 .

[169]  Peter V. Hobbs,et al.  Humidification factors for atmospheric aerosols off the mid‐Atlantic coast of the United States , 1999 .

[170]  M. Chin,et al.  Tropospheric sulfur simulation and sulfate direct radiative forcing in the Goddard Institute for Space Studies general circulation model , 1999 .

[171]  I. Tegen,et al.  Radiative Forcing of a Tropical Direct Circulation by Soil Dust Aerosols , 1999 .

[172]  Principles in Remote Sensing of Aerosol from MODIS Over Land and Ocean , 1999 .

[173]  A. Kirkevåg,et al.  On radiative effects of black carbon and sulphate aerosols , 1999 .

[174]  Melanie A. Wetzel,et al.  Satellite‐observed patterns in stratus microphysics, aerosol optical thickness, and shortwave radiative forcing , 1999 .

[175]  S. Kinne,et al.  Aerosol-induced radiative flux changes off the United States mid-Atlantic coast: Comparison of values calculated from sunphotometer and in situ data with those measured by airborne pyranometer , 1999 .

[176]  Jonathan P. Taylor,et al.  Comparison of observed and modeled direct aerosol forcing during TARFOX , 1999 .

[177]  Irina N. Sokolik,et al.  Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths , 1999 .

[178]  K. Wenzel,et al.  RADIATIVE PROPERTIES OF DESERT DUST AND ITS EFFECT ON RADIATIVE BALANCE , 1999 .

[179]  R. Charlson,et al.  Direct climate forcing by anthropogenic aerosols : Quantifying the link between atmospheric sulfate and radiation , 1999 .

[180]  D. Fahey,et al.  Aviation-Produced Aerosols and Cloudiness , 1999 .

[181]  G. Myhre,et al.  Estimation of the direct radiative forcing due to sulfate and soot aerosols , 1998 .

[182]  Leon D. Rotstayn,et al.  Indirect forcing by anthropogenic aerosols: A global climate model calculation of the effective‐radius and cloud‐lifetime effects , 1999 .

[183]  James J. Corbett,et al.  Effects of ship emissions on sulphur cycling and radiative climate forcing over the ocean , 1999, Nature.

[184]  S. K. Satheesh,et al.  A model for the natural and anthropogenic aerosols over the tropical Indian Ocean derived from Indian Ocean Experiment data , 1999 .

[185]  R. Somerville,et al.  Direct climate forcing by biomass-burning aerosols : Impact of correlations between controlling variables , 1999 .

[186]  P. Formenti,et al.  Clear-sky closure studies of lower tropospheric aerosol and water vapor during ACE-2 using airborne sunphotometer, airborne in-situ, space-borne, and ground-based measurements , 2000 .

[187]  L. Schüller,et al.  Radiative Properties of Boundary Layer Clouds: Droplet Effective Radius versus Number Concentration , 2000 .

[188]  Jacques Pelon,et al.  An overview of the ACE2 CLOUDYCOLUMN closure experiment , 2000 .

[189]  P. J. Rasch,et al.  Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research Community Climate Model, Version 3 , 2000 .

[190]  O. Boucher,et al.  Estimation of the aerosol perturbation to the Earth's Radiative Budget over oceans using POLDER satellite aerosol retrievals , 2000 .

[191]  Robert J. Charlson,et al.  Avoiding Circular Logic in Climate Modeling , 2000 .

[192]  P. J. Rasch,et al.  Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, features, and sensitivity to aqueous chemistry , 2000 .

[193]  Rosenfeld,et al.  Suppression of rain and snow by urban and industrial air pollution , 2000, Science.

[194]  Philip B. Russell,et al.  An overview of the ACE-2 clear sky column closure experiment (CLEARCOLUMN) , 2000 .

[195]  Joyce E. Penner,et al.  Indirect effect of sulfate and carbonaceous aerosols: A mechanistic treatment , 2000 .

[196]  K. Shine Radiative Forcing of Climate Change , 2000 .

[197]  V. Ramanathan,et al.  Aerosol modulation of atmospheric and surface solar heating over the tropical Indian Ocean , 2000 .

[198]  James G. Hudson,et al.  Evaluation of aerosol direct radiative forcing in MIRAGE , 2001 .

[199]  L. Ruby Leung,et al.  A physically based estimate of radiative forcing by anthropogenic sulfate aerosol , 2001 .

[200]  Gunnar Myhre,et al.  Global sensitivity experiments of the radiative forcing due to mineral aerosols , 2001 .

[201]  Andrew S. Jones,et al.  Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle , 2001 .

[202]  Jonathan P. Taylor,et al.  Optical properties and direct radiative effect of Saharan dust: A case study of two Saharan dust outbreaks using aircraft data , 2001 .

[203]  A limited‐area‐model case study of the effects of sub‐grid scale Variations in relative humidity and cloud upon the direct radiative forcing of sulfate aerosol , 2007 .