Equivariance and extendibility in finite reductive groups with connected center

[1]  G. Navarro,et al.  On Brauer’s Height Zero Conjecture , 2014, 2209.04736.

[2]  Shih-Chang Huang,et al.  On the Decomposition Numbers of Steinberg's Triality Groups 3 D 4(2 n ) in Odd Characteristics , 2013 .

[3]  B. Späth A reduction theorem for the blockwise Alperin weight conjecture , 2013 .

[4]  R. Kessar,et al.  Quasi-isolated blocks and Brauer’s height zero conjecture , 2011, 1112.2642.

[5]  Pham Huu Tiep,et al.  A reduction theorem for the Alperin weight conjecture , 2011 .

[6]  M. Cabanes Odd Character Degrees for Sp(2n,2) , 2011, 1102.5208.

[7]  Britta Spath Inductive McKay Condition in defining Characteristic , 2010, 1009.0463.

[8]  B. Späth Sylow d-tori of classical groups and the McKay conjecture, II , 2010 .

[9]  Britta Spaeth Regular Sylow $d$-Tori of classical groups and the McKay conjecture , 2009, 0903.4336.

[10]  B. Späth The McKay conjecture for exceptional groups and odd primes , 2009 .

[11]  G. Malle Extensions of unipotent characters and the inductive McKay condition , 2008 .

[12]  Michel Enguehard Vers une décomposition de Jordan des blocs des groupes réductifs finis , 2008 .

[13]  G. Malle The Inductive McKay Condition for Simple Groups Not of Lie Type , 2008 .

[14]  G. Malle Height 0 characters of finite groups of Lie type , 2007 .

[15]  Gunter Malle,et al.  A reduction theorem for the McKay conjecture , 2007 .

[16]  M. Geck Modular principal series representations , 2006, math/0603046.

[17]  M. Cabanes,et al.  Representation Theory of Finite Reductive Groups: Frontmatter , 2004 .

[18]  M. Cabanes,et al.  On Blocks of Finite Reductive Groups and Twisted Induction , 1999 .

[19]  Gabriel Navarro,et al.  Characters and blocks of finite groups , 1998 .

[20]  D. Gorenstein,et al.  The finite groups of Lie type , 1997 .

[21]  Michel Broué,et al.  Théorèmes de Sylow génériques pour les groupes réductifs sur les corps finis , 1992 .

[22]  Gerhard Hiss,et al.  On the decomposition numbers of G2(q) , 1989 .

[23]  M. Liebeck,et al.  Centralizers of Semisimple Elements in Finite Twisted Groups of Lie Type , 1985 .

[24]  George Lusztig,et al.  Characters of reductive groups over a finite field , 1984 .

[25]  Charles W. Curtis,et al.  Representations of finite groups of Lie type , 1979 .

[26]  G. Lusztig Coxeter orbits and eigenspaces of Frobenius , 1976 .

[27]  B. Späth A reduction theorem for the Alperin–McKay conjecture , 2012 .

[28]  Shih-Chang Huang,et al.  Character Table of a Borel Subgroup of the Ree Groups 2 F4( q2) , 2009 .

[29]  Gerhard Hiß,et al.  Unipotente Charaktere und Zerlegungszahlen der endlichen Chevalleygruppen vom Typ F 4 , 2006 .

[30]  C. Bonnafé Sur les caractères des groupes réductifs finis à centre non connexe : applications aux groupes spéciaux linéaires et unitaires , 2018, Astérisque.

[31]  F. Murnaghan,et al.  LINEAR ALGEBRAIC GROUPS , 2005 .

[32]  I. G. MacDonald,et al.  Lectures on Lie Groups and Lie Algebras: Simple groups of Lie type , 1995 .

[33]  M. Cabanes UNICITE DU SOUS-GROUPE ABELIEN DISTINGUE MAXIMAL DANS CERTAINS SOUS-GROUPES DE SYLOW , 1994 .

[34]  Geck Meinolf Generalized gelfand-graev characters for steinberg's triality groups and their applications , 1991 .

[35]  G. Hiss,et al.  Basic sets of Brauer characters of finite groups of Lie type. , 1991 .

[36]  B. Srinivasan Modular representations of finite groups of lie type in a non-defining characteristic , 1990 .

[37]  George Lusztig,et al.  On the representations of reductive groups with disconnected cen-tre , 1988 .

[38]  J. Alperin,et al.  Weights for finite groups , 1987 .

[39]  D. Gorenstein,et al.  The Classification of the Finite Simple Groups , 1983 .