Convergence of a Dinkelbach-type algorithm in generalized fractional programming

The convergence of a Dinkelbach-type algorithm in generalized fractional programming is obtained by considering the sensitivity of a parametrized problem. We show that the rate of convergence is at least equal to (1+√5)/2 when regularity conditions hold in a neighbourhood of the optimal solution. We give also a necessary and sufficient condition for the convergence to be quadratic (which will be verified in particular in the linear case) and an idea of its implementation in the convex case.ZusammenfassungDie Konvergenz eines Verfahrens i. S. von Dinkelbach zur Lösung verallgemeinerter Quotientenprogramme wird durch Untersuchung der Sensitivität eines parametrisierten Problems abgeleitet. Es wird gezeigt, daß die Konvergenzrate durch (1+√5)/2 nach unten beschränkt ist, falls gewisse Regularitätsbedingungen in einer Umgebung der Optimallösung erfüllt sind. Ferner wird eine notwendige und hinreichende Bedingung zur quadratischen Konvergenz hergeleitet. Es wird gezeigt, wie diese im Falle konvexer Probleme implementiert werden kann.

[1]  M. J. D. Powell,et al.  The Differential Correction Algorithm for Rational $\ell _\infty $-Approximation , 1972 .

[2]  B Cornetf,et al.  LIPSCHITZIAN SOLUTIONS OF PERTURBED NONLINEAR PROGRAMMING PROBLEMS , 2022 .

[3]  Siegfried Schaible,et al.  Bibliography in fractional programming , 1982, Z. Oper. Research.

[4]  A. Ralston A first course in numerical analysis , 1965 .

[5]  J. B. Hiriart-Urruty,et al.  Tangent Cones, Generalized Gradients and Mathematical Programming in Banach Spaces , 1979, Math. Oper. Res..

[6]  W. Ziemba,et al.  Generalized concavity in optimization and economics , 1981 .

[7]  S. Schaible,et al.  An algorithm for generalized fractional programs , 1985 .

[8]  Jacques A. Ferland,et al.  A note on an algorithm for generalized fractional programs , 1986 .

[9]  Jacob Flachs,et al.  Generalized Cheney-Loeb-Dinkelbach-Type Algorithms , 1985, Math. Oper. Res..

[10]  E. Haynsworth Determination of the inertia of a partitioned Hermitian matrix , 1968 .

[11]  Abraham Charnes,et al.  Programming with linear fractional functionals , 1962 .

[12]  Werner Dinkelbach On Nonlinear Fractional Programming , 1967 .

[13]  Jacques Borde Quelques aspects théoriques et algorithmiques en quasiconvexité , 1985 .

[14]  S. Schaible Fractional Programming. II, On Dinkelbach's Algorithm , 1976 .

[15]  J. Neumann A Model of General Economic Equilibrium , 1945 .

[16]  Anthony V. Fiacco,et al.  Sensitivity analysis for nonlinear programming using penalty methods , 1976, Math. Program..

[17]  M. J. D. Powell,et al.  The differential correction algorithm for rational L∞ approximation , 1971 .

[18]  Jean-Yves Potvin,et al.  Generalized fractional programming: Algorithms and numerical experimentation , 1985 .

[19]  S. Schaible Fractional programming: Applications and algorithms , 1981 .

[20]  Jacques A. Ferland,et al.  Duality in generalized linear fractional programming , 1983, Math. Program..