Customizing Computational Methods for Visual Analytics with Big Data

The volume of available data has been growing exponentially, increasing data problem's complexity and obscurity. In response, visual analytics (VA) has gained attention, yet its solutions haven't scaled well for big data. Computational methods can improve VA's scalability by giving users compact, meaningful information about the input data. However, the significant computation time these methods require hinders real-time interactive visualization of big data. By addressing crucial discrepancies between these methods and VA regarding precision and convergence, researchers have proposed ways to customize them for VA. These approaches, which include low-precision computation and iteration-level interactive visualization, ensure real-time interactive VA for big data.