STRONGLY MINIMAL STEINER SYSTEMS I: EXISTENCE

Abstract A linear space is a system of points and lines such that any two distinct points determine a unique line; a Steiner k-system (for $k \geq 2$ ) is a linear space such that each line has size exactly k. Clearly, as a two-sorted structure, no linear space can be strongly minimal. We formulate linear spaces in a (bi-interpretable) vocabulary $\tau $ with a single ternary relation R. We prove that for every integer k there exist $2^{\aleph _0}$ -many integer valued functions $\mu $ such that each $\mu $ determines a distinct strongly minimal Steiner k-system $\mathcal {G}_\mu $ , whose algebraic closure geometry has all the properties of the ab initio Hrushovski construction. Thus each is a counterexample to the Zilber Trichotomy Conjecture.

[1]  David Hilbert,et al.  The Foundations of Geometry , 1903, The Mathematical Gazette.

[2]  S. Stein On the foundations of quasigroups , 1957 .

[3]  John T. Baldwin,et al.  On strongly minimal sets , 1971, Journal of Symbolic Logic.

[4]  J. H. Mason,et al.  On a Class of Matroids Arising From Paths in Graphs , 1972 .

[5]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs I. Composition Theorems and Morphisms , 1972, J. Comb. Theory, Ser. A.

[6]  B. Ganter,et al.  Equational classes of Steiner systems , 1975 .

[7]  B. Ganter,et al.  Co-Ordinatizing Steiner Systems , 1980 .

[8]  Daniel Lascar,et al.  On the category of models of a complete theory , 1982, Journal of Symbolic Logic.

[9]  John T. Baldwin,et al.  First-order theories of abstract dependence relations , 1984, Ann. Pure Appl. Log..

[10]  B. Zilber The structure of models of uncountably categorical theories , 1984 .

[11]  Martin Ziegler,et al.  Quasi finitely axiomatizable totally categorical theories , 1986, Ann. Pure Appl. Log..

[12]  W. Hodges What is a Structure Theory , 1987 .

[13]  John B. Goode Hrushovski's Geometries , 1989, Easter Conference on Model Theory.

[14]  James G. Oxley,et al.  Matroid theory , 1992 .

[15]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[16]  Lynn Margaret Batten,et al.  The theory of finite linear spaces - combinatorics of points and lines , 1993 .

[17]  Ehud Hrushovski,et al.  A New Strongly Minimal Set , 1993, Ann. Pure Appl. Log..

[18]  Peter J. Cameron Infinite linear spaces , 1994, Discret. Math..

[19]  J. Baldwin An almost strongly minimal non-Desarguesian projective plane , 1994 .

[20]  A. Pillay Geometric Stability Theory , 1996 .

[21]  John T. Baldwin,et al.  Stable Generic Structures , 1996, Ann. Pure Appl. Log..

[22]  E. Bouscaren Model theory and algebraic geometry : an introduction to E. Hrushovski's proof of the geometric Mordell-Lang conjecture , 1998 .

[23]  D. Marker Strongly Minimal Sets and Geometry , 1995, Logic Colloquium.

[24]  Kitty L. Holland Model Completeness of The New Strongly Minimal Sets , 1999, J. Symb. Log..

[25]  Alfred Tarski,et al.  Tarski's System of Geometry , 1999, Bulletin of Symbolic Logic.

[26]  J. Baldwin,et al.  Constructing ω-stable structures: rank 2 fields , 2000, Journal of Symbolic Logic.

[27]  The Model Theory of Algebraically Closed Fields , 2000 .

[28]  David M. Evans Block transitive Steiner systems with more than one point orbit , 2004 .

[29]  Per Lindström On Model‐Completeness , 2008 .

[30]  Navin M. Singhi,et al.  Projective planes I , 2010, Eur. J. Comb..

[31]  Colin D. Reid,et al.  Steiner systems S(2, 4,v) - a survey , 2010 .

[32]  S. Shelah,et al.  Regularity lemmas for stable graphs , 2011, 1102.3904.

[33]  David M. Evans,et al.  The geometry of Hrushovski constructions, I: The uncollapsed case , 2011, Ann. Pure Appl. Log..

[34]  David M. Evans,et al.  The geometry of Hrushovski constructions, II. The strongly minimal case , 2012, J. Symb. Log..

[35]  Peter J. Cameron,et al.  Perfect countably infinite Steiner triple systems , 2012, Australas. J Comb..

[36]  Martin Ziegler An exposition of Hrushovski's New Strongly Minimal Set , 2013, Ann. Pure Appl. Log..

[37]  David M. Evans,et al.  A counterexample to the reconstruction of $\omega$-categorical structures from their endomorphism monoids , 2015, 1510.00356.

[38]  Johann A. Makowsky,et al.  Can one design a geometry engine? On the (un)decidability of affine Euclidean geometries , 2017, ArXiv.

[39]  Assaf Hasson,et al.  On the geometries of Hrushovski's constructions , 2017 .

[40]  John T. Baldwin,et al.  Fundamentals of Stability Theory , 2017, Perspectives in Logic.

[41]  Johann A. Makowsky Can one design a geometry engine? , 2018, Annals of Mathematics and Artificial Intelligence.

[42]  J. Baldwin Axiomatizing Changing Conceptions of the Geometric Continuum I: Euclid-Hilbert , 2018 .

[43]  Gianluca Paolini,et al.  Beyond abstract elementary classes: On the model theory of geometric lattices , 2015, Ann. Pure Appl. Log..

[44]  John T. Baldwin,et al.  Model Theory and the Philosophy of Mathematical Practice: Formalization without Foundationalism , 2018 .

[45]  David M. Evans,et al.  A counterexample to the reconstruction of ω-categorical structures from their endomorphism monoid , 2018 .

[46]  Omer Mermelstein Infinite and Finitary Combinatorics Around Hrushovski Constructions , 2018 .

[47]  J. Baldwin Axiomatizing Changing Conceptions of the Geometric Continuum II: Archimedes-Descartes-Hilbert-Tarski† , 2019 .

[48]  Alex Kruckman,et al.  Independence in Generic incidence Structures , 2019, J. Symb. Log..

[49]  Silvia Barbina,et al.  Model theory of Steiner triple systems , 2018, J. Math. Log..

[50]  First-order model theory of free projective planes , 2018, Ann. Pure Appl. Log..