Flow Induced Vibration of a Steam Control Valve in Middle-Opening Condition

In some cases, a steam control valve in a power plant causes a large vibration of the piping system under partial valve opening. For rationalization of maintenance and management of a plant, it is favorable to optimize the valve geometry to prevent such vibration. However, it is difficult to understand the flow characteristics in detail only from experiments because the flow around a valve has a complex 3D structure and becomes supersonic (M>1). Therefore, it is useful to combine experiments and CFD (Computational Fluid Dynamics) for the clarification of the cause of vibration and optimization of valve geometry. In previous researches involving experiment and CFD calculation using “MATIS” code, we found that an asymmetric flow attached to the valve body (named “valve-attached flow”) occurs and pressure increases where the valve-attached flow collides with the flow from the opposite side under the middle opening condition. This high-pressure region rotates circumferentially (named “rotating pressure fluctuation”) and causes cyclic side load on the valve body. However, because we assumed the valve support is rigid, we cannot clarify the interaction between the rotating pressure fluctuation and the valve vibration when the valve stiffness is small. Thus, in this paper, we conducted flow-induced vibration experiments on a valve with a very weak support and investigated the characteristics of the vibration mode under the middle-opening condition. As a result, under the specific lift condition of the region where rotating pressure fluctuation occurs, lock-in phenomena between the rotating pressure fluctuation and the valve vibration occur and large-amplitude vibration can be seen.Copyright © 2005 by ASME