A Recovery Based Linear Finite Element Method For 1D Bi-Harmonic Problems
暂无分享,去创建一个
[1] Mohamed El-Gamel,et al. An Efficient Technique for Finding the Eigenvalues of Fourth-Order Sturm-Liouville Problems , 2012 .
[2] Ahmed Naga,et al. THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .
[3] F. Chatelin. Spectral approximation of linear operators , 2011 .
[4] Zhimin Zhang,et al. Function Value Recovery and Its Application in Eigenvalue Problems , 2012, SIAM J. Numer. Anal..
[5] Yuan-Ming Wang,et al. Time-Delayed finite difference reaction-diffusion systems with nonquasimonotone functions , 2006, Numerische Mathematik.
[6] Wang Ming,et al. The Morley element for fourth order elliptic equations in any dimensions , 2006, Numerische Mathematik.
[7] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[8] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[9] Bishnu P. Lamichhane,et al. A finite element method for a biharmonic equation based on gradient recovery operators , 2014 .
[10] J. Z. Zhu,et al. Superconvergence recovery technique and a posteriori error estimators , 1990 .
[11] Zhimin Zhang,et al. Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..
[12] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[13] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[14] Zhimin Zhang,et al. A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..
[15] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[16] Do Y. Kwak,et al. Immersed finite element method for eigenvalue problem , 2014, J. Comput. Appl. Math..
[17] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..