Alkali metal adsorption on graphite: a review

The adsorption of alkali metals on graphite has been the subject of various studies for the past two decades. Briefly, two main reasons can be offered to justify the persisting interest in these adsorption systems. First, experiments have pointed out intriguing structural phase transitions of the adsorbed species, and, second, in an attempt to explain the experimental results, the more complicated question of the nature of alkali metal–graphite bonding arose. Despite the relative simplicity of the electronic structure of the alkali metals, their interaction with the graphite surface is still the subject of current debate. This review paper presents relevant experimental data and results of selected theoretical calculations that, in time, guided the process of scientific discovery towards the current understanding of the alkali metals/graphite adsorption systems.

[1]  P. A. Brühwiler,et al.  Bonding of an Isolated K atom to a Surface: Experiment and Theory , 1997 .

[2]  J. B. Swan Characteristic Electron Energy Losses in Sodium and Potassium , 1964 .

[3]  B. Persson,et al.  Vibrational excitation cross-sections for adsorbed CO , 1980 .

[4]  A. Ignatiev,et al.  Lithium adsorption on the graphite (0001) surface , 1984 .

[5]  M. Breitholtz,et al.  Alkali-metal-deposition-induced energy shifts of a secondary line in photoemission from graphite , 2004 .

[6]  R. McGrath,et al.  Structural studies of alkali metal adsorption and coadsorption on metal surfaces , 1996 .

[7]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[8]  S. Rabii,et al.  Electronic properties of graphite: A unified theoretical study , 1982 .

[9]  D. P. Woodruff,et al.  Modern Techniques of Surface Science: Atomic and molecular beam scattering , 1994 .

[10]  Palmer,et al.  Electronic structure and phase transitions of submonolayer potassium on graphite. , 1992, Physical review. B, Condensed matter.

[11]  Lars Österlund,et al.  Electronic structure and kinetics of K on graphite , 2000 .

[12]  Anders Nilsson,et al.  Photoemission study of K on graphite , 1999 .

[13]  G. Bacon The determination of the unit-cell dimensions of non-cubic substances , 1948 .

[14]  N. Wu,et al.  Low-energy-electron-diffraction structural determination of the graphite (0001) surface , 1982 .

[15]  L. Wallden,et al.  Subsurface condensation of potassium for K/graphite , 2002 .

[16]  Renee D. Diehl,et al.  Low-energy electron diffraction study of potassium adsorbed on single-crystal graphite and highly oriented pyrolytic graphite , 2004 .

[17]  M. T. Johnson,et al.  Electronic structure of ordered Cs and K overlayers on graphite: Direct observation of complete charge transfer , 1986 .

[18]  Palmer,et al.  Temperature-dependent plasmon frequency and linewidth in a semimetal. , 1991, Physical review letters.

[19]  Palmer,et al.  Phase transitions and excitation spectrum of submonolayer potassium on graphite. , 1991, Physical review letters.

[20]  N. Wu,et al.  Potassium absorption into the graphite (0001) surface: Intercalation , 1983 .

[21]  Sodium atoms and clusters on graphite by density functional theory , 2004, physics/0401096.

[22]  J. McTague,et al.  Orientational epitaxy—the orientational ordering of incommensurate structures , 1977 .

[23]  Wu,et al.  Orientational ordering of a cesium monolayer on graphite. , 1991, Physical Review B (Condensed Matter).

[24]  Dirk Lamoen,et al.  Adsorption of potassium and oxygen on graphite: A theoretical study , 1998 .

[25]  B. Feuerbacher,et al.  Experimental Investigation of Photoemission from Satellite Surface Materials , 1972 .

[26]  B. Hellsing,et al.  Photon induced desorption and intercalation of potassium atoms deposited on graphite (0001) , 1996 .

[27]  N. Wu,et al.  Summary Abstract: Low energy electron diffraction study of crystalline graphite and potassium overlayers on graphite , 1982 .

[28]  B. Hellsing,et al.  Photoinduced desorption of potassium atoms from graphite , 1996 .

[29]  K. Hock,et al.  Intercalation of potassium from the surface of graphite , 1993 .

[30]  K. Hock,et al.  Temperature dependent behaviour in the adsorption of submonolayer potassium on graphite , 1993 .

[31]  B. Hellsing,et al.  Photostimulated desorption of metal adatoms: potassium on graphite , 1994 .

[32]  M. W. Cole,et al.  Alkali-metal-plated graphite surfaces: He interaction and diffraction , 1992 .

[33]  M. Hunt,et al.  Electronic and geometric structure of Cs on graphite (0001) , 1996 .

[34]  B. Hellsing,et al.  PHOTOINDUCED DESORPTION OF POTASSIUM ATOMS FROM A TWO DIMENSIONAL OVERLAYER ON GRAPHITE , 1997 .

[35]  Wu,et al.  Cesium adsorption on graphite (0001) surface: The phase diagram. , 1986, Physical review. B, Condensed matter.

[36]  F. Toigo,et al.  He-scattering studies of alkali metal overlayers on graphite , 1994 .

[37]  B. Kasemo,et al.  Thermal and adsorbate induced plasmon energy shifts in graphite , 2003 .

[38]  Citrin,et al.  Nature of the charge localized between alkali adatoms and metal substrates. , 1994, Physical review. B, Condensed matter.

[39]  M. Lindroos,et al.  Dynamical low-energy electron diffraction study of graphite (0 0 0 1)-(√3×√3)R30°-Xe , 2004 .

[40]  Lars Österlund,et al.  Potassium adsorption on graphite(0001) , 1999 .

[41]  Toigo,et al.  First-principles study of potassium adsorption on graphite. , 1993, Physical review. B, Condensed matter.

[42]  K. Hock,et al.  Potassium-adsorption-induced plasmon frequency shift in graphite , 1991 .

[43]  P. Sjövall Intercalation of potassium in graphite studied by thermal desorption spectroscopy , 1996 .