Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?

This paper analyzes whether the skew-normal and skew-student distributions recently discussed in the finance literature are reasonable models for describing claims in property-liability insurance. We consider two well-known datasets from actuarial science and fit a number of parametric distributions to these data. Also the non-parametric transformation kernel approach is considered as a benchmark model. We find that the skew-normal and skew-student are reasonably competitive compared to other models in the literature when describing insurance data. In addition to goodness-of-fit tests, tail risk measures such as value at risk and tail value at risk are estimated for the datasets under consideration.

[1]  Anil K. Bera,et al.  A test for normality of observations and regression residuals , 1987 .

[2]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[3]  Paul Embrechts,et al.  Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.

[4]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[5]  M. Lane,et al.  Pricing Risk Transfer Transactions1 , 2000, ASTIN Bulletin.

[6]  Greg Taylor,et al.  Non‐Life Insurance , 2006 .

[7]  M. Pourahmadi Skew-Normal ARMA Models with Nonlinear Heteroscedastic Predictors , 2007 .

[8]  Thomas Mikosch,et al.  Non-Life Insurance Mathematics , 2004 .

[9]  O. Barndorff-Nielsen Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling , 1997 .

[10]  E. Eberlein,et al.  New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .

[11]  Stuart A. Klugman,et al.  Fitting bivariate loss distributions with copulas , 1999 .

[12]  A. McNeil,et al.  The Peaks over Thresholds Method for Estimating High Quantiles of Loss Distributions , 1998 .

[13]  Montserrat Guillén,et al.  Estimation of Parametric and Nonparametric Models for Univariate Claim Severity Distributions: An Approach Using R , 2011 .

[14]  Jens Perch Nielsen,et al.  Kernel density estimation of actuarial loss functions , 2003 .

[15]  Ananda Sen,et al.  Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality , 2005, Technometrics.

[16]  Jan Dhaene,et al.  Modern Actuarial Risk Theory , 2001 .

[17]  Raluca Vernic,et al.  Skewed bivariate models and nonparametric estimation for the CTE risk measure , 2008 .

[18]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.

[19]  C. Adcock Extensions of Stein's Lemma for the Skew-Normal Distribution , 2007 .

[20]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[21]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[22]  Marno Verbeek,et al.  Selecting Copulas for Risk Management , 2006 .

[23]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[24]  Stanley J. Kon Models of Stock Returns—A Comparison , 1984 .

[25]  Sidney I. Resnick,et al.  Discussion of the Danish Data on Large Fire Insurance Losses , 1997, ASTIN Bulletin.

[26]  A. McNeil Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory , 1997, ASTIN Bulletin.

[27]  Malwane M. A. Ananda,et al.  Modeling actuarial data with a composite lognormal-Pareto model , 2005 .

[28]  Bruce L. Jones,et al.  Multivariate Extreme Value Theory And Its Usefulness In Understanding Risk , 2006 .

[29]  C. J. Adcock,et al.  Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution , 2010, Ann. Oper. Res..

[30]  D. Dey,et al.  A General Class of Multivariate Skew-Elliptical Distributions , 2001 .

[31]  P. Embrechts,et al.  Extremes and Robustness: A Contradiction? , 2006 .

[32]  Raluca Vernic Multivariate skew-normal distributions with applications in insurance , 2006 .

[33]  M. Eling,et al.  Skewness in hedge funds returns: classical skewness coefficients vs Azzalini's skewness parameter , 2010 .

[34]  M. Genton,et al.  A multivariate skew-garch model , 2006 .