Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?
暂无分享,去创建一个
[1] Anil K. Bera,et al. A test for normality of observations and regression residuals , 1987 .
[2] Emiliano A. Valdez,et al. Understanding Relationships Using Copulas , 1998 .
[3] Paul Embrechts,et al. Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.
[4] P. Embrechts,et al. Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .
[5] M. Lane,et al. Pricing Risk Transfer Transactions1 , 2000, ASTIN Bulletin.
[6] Greg Taylor,et al. Non‐Life Insurance , 2006 .
[7] M. Pourahmadi. Skew-Normal ARMA Models with Nonlinear Heteroscedastic Predictors , 2007 .
[8] Thomas Mikosch,et al. Non-Life Insurance Mathematics , 2004 .
[9] O. Barndorff-Nielsen. Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling , 1997 .
[10] E. Eberlein,et al. New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .
[11] Stuart A. Klugman,et al. Fitting bivariate loss distributions with copulas , 1999 .
[12] A. McNeil,et al. The Peaks over Thresholds Method for Estimating High Quantiles of Loss Distributions , 1998 .
[13] Montserrat Guillén,et al. Estimation of Parametric and Nonparametric Models for Univariate Claim Severity Distributions: An Approach Using R , 2011 .
[14] Jens Perch Nielsen,et al. Kernel density estimation of actuarial loss functions , 2003 .
[15] Ananda Sen,et al. Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality , 2005, Technometrics.
[16] Jan Dhaene,et al. Modern Actuarial Risk Theory , 2001 .
[17] Raluca Vernic,et al. Skewed bivariate models and nonparametric estimation for the CTE risk measure , 2008 .
[18] A. Azzalini,et al. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.
[19] C. Adcock. Extensions of Stein's Lemma for the Skew-Normal Distribution , 2007 .
[20] J. Corcoran. Modelling Extremal Events for Insurance and Finance , 2002 .
[21] A. Azzalini. A class of distributions which includes the normal ones , 1985 .
[22] Marno Verbeek,et al. Selecting Copulas for Risk Management , 2006 .
[23] C. Klüppelberg,et al. Modelling Extremal Events , 1997 .
[24] Stanley J. Kon. Models of Stock Returns—A Comparison , 1984 .
[25] Sidney I. Resnick,et al. Discussion of the Danish Data on Large Fire Insurance Losses , 1997, ASTIN Bulletin.
[26] A. McNeil. Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory , 1997, ASTIN Bulletin.
[27] Malwane M. A. Ananda,et al. Modeling actuarial data with a composite lognormal-Pareto model , 2005 .
[28] Bruce L. Jones,et al. Multivariate Extreme Value Theory And Its Usefulness In Understanding Risk , 2006 .
[29] C. J. Adcock,et al. Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution , 2010, Ann. Oper. Res..
[30] D. Dey,et al. A General Class of Multivariate Skew-Elliptical Distributions , 2001 .
[31] P. Embrechts,et al. Extremes and Robustness: A Contradiction? , 2006 .
[32] Raluca Vernic. Multivariate skew-normal distributions with applications in insurance , 2006 .
[33] M. Eling,et al. Skewness in hedge funds returns: classical skewness coefficients vs Azzalini's skewness parameter , 2010 .
[34] M. Genton,et al. A multivariate skew-garch model , 2006 .