The genetic architecture of Parkinson disease in Spain: characterizing population-specific risk, differential haplotype structures, and providing etiologic insight

Background The Iberian Peninsula stands out as having variable levels of population admixture and isolation, making Spain an interesting setting for studying the genetic architecture of neurodegenerative diseases. Objectives To perform the largest Parkinson disease (PD) genome-wide association study (GWAS) restricted to a single country. Methods We performed a GWAS for both risk of PD and age-at-onset (AAO) in 7,849 Spanish individuals. Further analyses included population-specific risk haplotype assessments, polygenic risk scoring through machine learning, Mendelian randomization of expression and methylation data to gain insight into disease-associated loci, heritability estimates, genetic correlations and burden analyses. Results We identified a novel population-specific GWAS signal at PARK2 associated with AAO. We replicated four genome-wide independent signals associated with PD risk, including SNCA, LRRK2, KANSL1/MAPT and HLA-DQB1. A significant trend for smaller risk haplotypes at known loci was found compared to similar studies of non-Spanish origin. Seventeen PD-related genes showed functional consequence via two-sample Mendelian randomization in expression and methylation datasets. Long runs of homozygosity at 28 known genes/loci were found to be enriched in cases versus controls. Conclusions Our data demonstrate the utility of the Spanish risk haplotype substructure for future fine-mapping efforts, showing how leveraging unique and diverse population histories can benefit genetic studies of complex diseases. The present study points to PARK2 as a major hallmark of PD etiology in Spain.

Sonja W. Scholz | D. Hernandez | M. Nalls | A. Singleton | J. Hoenicka | C. Blauwendraat | E. Tolosa | J. Kulisevsky | F. Valldeoriola | J. López-Sendón | V. Álvarez | J. Clarimón | P. Pástor | E. Muñoz | M. Marti | S. Scholz | J. Simón‐Sánchez | J. R. Gibbs | H. Morris | J. Brooks | C. Clarke | K. Morrison | J. Botía | J. Infante | C. Dalgard | A. López de Munain | J. Marín-Lahoz | B. Pascual-Sedano | J. Pagonabarraga | M. Aguilar | I. Álvarez | M. Diez-Fairen | Oriol Dols-Icardo | M. Menéndez-González | S. Bandres-Ciga | Sarah Ahmed | M. Sabir | A. Adarmes-Gómez | Inmaculada Bernal-Bernal | D. Buiza-Rueda | F. Carrillo | M. Carrión-Claro | P. Gómez-Garre | S. Jesús | M. Labrador-Espinosa | D. Macias | Carlota Méndez-del-Barrio | T. Periñán-Tocino | Cristina Tejera-Parrado | Laura Vargas-González | J. P. Tartari | M. Buongiorno | A. Gorostidi | J. Bergareche | E. Mondragón | A. Vinagre-Aragón | I. Croitoru | J. Ruiz‐Martinez | M. Ezquerra | A. Cámara | Y. Compta | Manel Fernández | R. Fernández-Santiago | I. González-Aramburu | A. Sánchez Rodríguez | M. Sierra | M. Blázquez | C. García | E. Suarez-San Martin | P. García-Ruiz | J. C. Martínez‐Castrillo | L. Vela-Desojo | C. Ruz | F. Barrero | F. Escamilla-Sevilla | A. Mínguez-Castellanos | D. Cerdán | C. Tabernero | M. J. Gomez Heredia | F. Pérez Errazquin | M. Romero-Acebal | C. Feliz | M. Mata | Irene Martínez Torres | Jonggeol J. Kim | S. Sáez-Atienzar | R. Jorda | L. Bonet-Ponce | M. Tan | Connor Edsall | A. Jiménez-Escrig | J. Duarte | F. Vives | R. Durán | P. Mir | Marta Bonilla Toribio | Antonio Sanchez Rodriguez | E. Martín | M. J. G. Heredia | F. Errazquin | I. M. Torres | A. L. de Munain | M. Fernández | O. Dols-Icardo | P. Garcia-Ruiz | R. Duran | D. Buiza‐Rueda | Clara Ruz | J. Kim | I. Bernal-Bernal | M. G. Heredia | C. Méndez-del-Barrio | C. Tejera-Parrado | L. Vargas-González | I. González‐Aramburu | J. Simón-Sánchez | I. Bernal‐Bernal | L. Vargas‐González | Luis Bonet-Ponce | Marta Bonilla‐Toribio | M. Tan | J. Martínez-Castrillo | P. Pastor

[1]  Nicholas J. Horton,et al.  Using R and RStudio for Data Management, Statistical Analysis, and Graphics , 2015 .

[2]  A. Singleton,et al.  alpha-Synuclein locus triplication causes Parkinson's disease. , 2003, Science.

[3]  M. Peters,et al.  Systematic identification of trans eQTLs as putative drivers of known disease associations , 2013, Nature Genetics.

[4]  M. Polymeropoulos,et al.  Deletions in the Parkin gene and genetic heterogeneity in a Greek family with early onset Parkinson’s disease , 1998, Human Genetics.

[5]  P. Stenson,et al.  Human Gene Mutation Database: towards a comprehensive central mutation database , 2007, Journal of Medical Genetics.

[6]  Sonja W. Scholz,et al.  Structural genomic variation in ischemic stroke , 2008, Neurogenetics.

[7]  I. Alonso,et al.  Genomic mechanisms underlying PARK2 large deletions identified in a cohort of patients with PD , 2016, Neurology: Genetics.

[8]  Sonja W. Scholz,et al.  NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases , 2017, Neurobiology of Aging.

[9]  Sonja W. Scholz,et al.  Parkinson disease age of onset GWAS: defining heritability, genetic loci and a-synuclein mechanisms , 2018, bioRxiv.

[10]  M. Nalls,et al.  A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci , 2017, Nature Genetics.

[11]  Tom R. Gaunt,et al.  LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis , 2016, bioRxiv.

[12]  Simon C. Potter,et al.  Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease , 2017, Brain : a journal of neurology.

[13]  P. Visscher,et al.  Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets , 2016, Nature Genetics.

[14]  Ran Gilad-Bachrach,et al.  DART: Dropouts meet Multiple Additive Regression Trees , 2015, AISTATS.

[15]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[16]  Sina A. Gharib,et al.  Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood , 2018, Nature Communications.

[17]  J. Obeso,et al.  Pooled-DNA target sequencing of Parkinson genes reveals novel phenotypic associations in Spanish population , 2018, Neurobiology of Aging.

[18]  Christopher R. Gignoux,et al.  Gene flow from North Africa contributes to differential human genetic diversity in southern Europe , 2013, Proceedings of the National Academy of Sciences.

[19]  Sonja W. Scholz,et al.  Parkinson’s disease genetics: identifying novel risk loci, providing causal insights and improving estimates of heritable risk , 2018, bioRxiv.

[20]  Janel O. Johnson,et al.  α-Synuclein Locus Triplication Causes Parkinson's Disease , 2003, Science.

[21]  E. Tolosa,et al.  Relative high frequency of the c.255delA parkin gene mutation in Spanish patients with autosomal recessive parkinsonism , 2002, Journal of neurology, neurosurgery, and psychiatry.

[22]  F. Morón,et al.  Genetic Structure of the Spanish Population , 2010, BMC Genomics.

[23]  E. Topol,et al.  The personal and clinical utility of polygenic risk scores , 2018, Nature Reviews Genetics.

[24]  Xiaowei Zhan,et al.  RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data , 2016, Bioinform..

[25]  Sonja W. Scholz,et al.  Expanding Parkinson’s disease genetics: novel risk loci, genomic context, causal insights and heritable risk , 2018 .

[26]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[27]  Pablo Mir,et al.  Systematic mutational analysis of FBXO7 in a Parkinson's disease population from southern Spain , 2014, Neurobiology of Aging.

[28]  E. Tolosa,et al.  Familial atypical progressive supranuclear palsy associated with homozigosity for the delN296 mutation in the tau gene , 2001, Annals of neurology.

[29]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[30]  S. Gilman,et al.  Diagnostic criteria for Parkinson disease. , 1999, Archives of neurology.

[31]  Yongtao Guan Detecting Structure of Haplotypes and Local Ancestry , 2014, Genetics.

[32]  Annie Niehaus,et al.  Using ClinVar as a Resource to Support Variant Interpretation , 2016, Current protocols in human genetics.

[33]  A. Singleton,et al.  Genetic risk factors in Parkinson’s disease , 2018, Cell and Tissue Research.

[34]  Jack Euesden,et al.  PRSice: Polygenic Risk Score software , 2014, Bioinform..