Optical performance of the reflective surface profile of a Heliostat

Micro gas turbine (MGT) central receiver systems offer advantages which could improve the techno-economic viability of the next generation of concentrating solar power (CSP) plants. This relatively young technology is not yet well understood, and the optimal configurations are yet to be determined. The high flux requirements and small modular configuration suggest that the heliostat field of a MGT CSP plant may have alternative parameter sensitivities than conventional systems. The objective of this thesis is to fundamentally understand the optics of a heliostat to develop methods, models and figures of merit as tools to improve the techno-economic viability of central receiver systems with particular emphasis on MGT CSP. A study of the fundamentals of heliostat optics shows that heliostat beam aberrations are statistically differentiated according to whether they occur consecutively or are path dependent. Three key factors – namely the sun shape, normal vector error aberrations and astigmatic aberrations – are found to dominate the dispersion of a heliostat beam and they are described analytically. This knowledge presents the principal components required to accurately describe heliostat field performance. The development and validation of a new analytical method to model flux distribution of a heliostat shows that it is possible to achieve suitable levels of confidence by appropriately accounting for these factors. The accuracy improvements offered by the method is particularly beneficial when used to model higher accuracy heliostats that would typically be used in MGT CSP. The flux distribution error and peak flux error of the proposed method are shown to be up to 60.6 % and 88.2 % lower than that of state of the art methods respectively. This method is applied in a techno-economic sensitivity study that illustrates that high accuracy optics result in lower levelised cost of energy. Both the cost breakdown and the alternative optical requirements show that MGT CSP does have alternative parameter sensitivities. The collective findings of this thesis suggests that small heliostats offer significant optical performance increases in the context of MGT CSP and potentially leads to cost minimum. ii Stellenbosch University https://scholar.sun.ac.za

[1]  A. Pfahl,et al.  Determination of wind loads on heliostats , 2011 .

[2]  Gilles Flamant,et al.  SOLFAST, a Ray-Tracing Monte-Carlo software for solar concentrating facilities , 2012 .

[3]  L. Vant-Hull,et al.  Issues with Beam-down Concepts , 2014 .

[4]  P. Bendt,et al.  Effect of Circumsolar Radiation on Performance of Focusing Collectors , 1982 .

[5]  H. Hottel A simple model for estimating the transmittance of direct solar radiation through clear atmospheres , 1976 .

[6]  D. Wasyluk,et al.  eSolar's Modular, Scalable Molten Salt Power Tower Reference Plant Design , 2014 .

[7]  F.M.F Siala,et al.  Mathematical formulation of a graphical method for a no-blocking heliostat field layout , 2001 .

[8]  ALFRED S. E. ACKERMANN,et al.  Power from the Sun , 1920, Nature.

[9]  Charles E. Andraka,et al.  Evaluation of Advanced Heliostat Reflective Facets on Cost and Performance , 2014 .

[10]  Rainer Kistner,et al.  Financing solar thermal power plants , 1999 .

[11]  Frederick W. Lipps Four different views of the heliostat flux density integral , 1976 .

[12]  Henry Coddington An Elementary Treatise On Optics , 2011 .

[13]  Aldo Steinfeld,et al.  Optimum aperture size and operating temperature of a solar cavity-receiver , 1993 .

[14]  Pierre Garcia,et al.  Codes for solar flux calculation dedicated to central receiver system applications : A comparative review , 2008 .

[15]  L. L. vant-Hull,et al.  The Role of “Allowable Flux Density” in the Design and Operation of Molten-Salt Solar Central Receivers , 2001 .

[16]  M. Sengupta,et al.  Atmospheric Attenuation in Central Receiver Systems from DNI Measurements , 2012 .

[17]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[18]  Lee A. Weinstein,et al.  Diverging polygon-based modeling (DPBM) of concentrated solar flux distributions , 2015 .

[19]  D L King Beam quality and tracking-accuracy evaluation of second-generation and Barstow production heliostats , 1982 .

[20]  Sandia Report,et al.  Software and Codes for Analysis of Concentrating Solar Power Technologies , 2008 .

[21]  Phillipp Kaestner Ray Tracing From The Ground Up , 2016 .

[22]  Kok-Keong Chong Optical analysis for simplified astigmatic correction of non-imaging focusing heliostat , 2010 .

[23]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[24]  F. W. Lipps,et al.  A cellwise method for the optimization of large central receiver systems , 1978 .

[25]  J. D. L. Torre Calculs de sensibilités par méthode de Monte-Carlo, pour la conception de procédés à énergie solaire concentrée , 2011 .

[26]  J. Michalsky The Astronomical Almanac's algorithm for approximate solar position (1950 - 2050). , 1988 .

[27]  Steve Schell,et al.  Design and evaluation of esolar's heliostat fields , 2011 .

[28]  Y. T. Chen,et al.  Off-axis aberration correction surface in solar energy application , 2006 .

[29]  Nicolas Bayer Botero,et al.  Heliostat field layout optimization for high-temperature solar thermochemical processing , 2011 .

[30]  L. L. vant-Hull,et al.  Performance of optimized solar central receiver systems as a function of receiver thermal loss per unit area , 1986 .

[31]  Corey J. Noone Optimization of central receiver concentrated solar thermal : site selection, heliostat layout & canting , 2011 .

[32]  Abraham Kribus,et al.  The DIAPR: A High-Pressure, High-Temperature Solar Receiver , 1997 .

[33]  F. Collado One-point fitting of the flux density produced by a heliostat , 2010 .

[34]  Robert Pitz-Paal,et al.  Visual HFLCAL - A Software Tool for Layout and Optimisation of Heliostat Fields , 2009 .

[35]  James B. Blackmon Parametric determination of heliostat minimum cost per unit area , 2013 .

[36]  F. Collado,et al.  An analytic function for the flux density due to sunlight reflected from a heliostat , 1986 .

[37]  J A Peterka,et al.  Wind load design methods for ground-based heliostats and parabolic dish collectors , 1992 .

[38]  W. Spirkl,et al.  Performance limits of heliostat fields , 1998 .

[39]  S. A. Jones A comparison of on-axis and off-axis heliostat alignment strategies , 1996 .

[40]  C. E. Kennedy,et al.  Optical Durability of Candidate Solar Reflectors , 2005 .

[41]  Elias K. Stefanakos,et al.  Optimal heliostat aiming strategy for uniform distribution of heat flux on the receiver of a solar power tower plant , 2014 .

[42]  F. W. Lipps,et al.  An analytic evaluation of the flux density due to sunlight reflected from a flat mirror having a polygonal boundary , 1978 .

[43]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[44]  Roland Winston,et al.  High Collection Nonimaging Optics , 1989, Other Conferences.

[45]  I. Reda,et al.  Solar position algorithm for solar radiation applications , 2004 .

[47]  James T. Kajiya,et al.  The rendering equation , 1998 .

[48]  Karel Johan Malan A heliostat field control system , 2014 .

[49]  F. Biggs,et al.  Simplified Calculational Procedure for Determining the Amount of Intercepted Sunlight in an Imaging Solar Concentrator , 1983 .

[50]  Chao Xu,et al.  Study on the Allowable Flux Density for a Solar Central Dual-receiver☆ , 2015 .

[51]  F. W. Lipps A numerical approach to the flux density integral for reflected sunlight , 1979 .

[52]  Economical Design of Glass and Aluminum Panels by the Large Deflection Theory , 2002 .

[53]  Robert Pitz-Paal,et al.  Determination of circumsolar radiation and its effect on concentrating solar power , 2014 .

[54]  R. M. Houser,et al.  Recent results on the optical performance of solar two heliostats , 1994 .

[55]  J. Daly Solar concentrator flux distributions using backward ray tracing. , 1979, Applied optics.

[56]  Boon-Han Lim,et al.  General Sun Tracking Formula for Heliostats With Arbitrarily Oriented Axes , 2006 .

[57]  Germain Augsburger,et al.  Thermo-economic optimisation of large solar tower power plants , 2013 .

[58]  Ari Rabl,et al.  Tower reflector for solar power plant , 1976 .

[59]  Tim Wendelin,et al.  SolTRACE: A New Optical Modeling Tool for Concentrating Solar Optics , 2003 .

[60]  M. Schubnell Influence of circumsolar radiation on aperture, operating temperature and efficiency of a solar cavity receiver , 1992 .

[61]  Antonio L. Avila-Marin,et al.  Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: A review , 2011 .

[62]  Zhifeng Wang,et al.  On the analysis of an elliptical Gaussian flux image and its equivalent circular Gaussian flux images , 2011 .

[63]  Carsten Holze,et al.  Autonomous light-weight heliostat with rim drives , 2013 .

[64]  Peng Hu,et al.  Gauss–Legendre integration of an analytical function to calculate the optical efficiency of a heliostat , 2013 .

[65]  S. Bode Development of a ray tracer for concentrating solar power systems , 2017 .

[66]  FOR DETERMINING A CONTINUOUS ABERRATION FREE HELIOSTAT SURFACE , 2012 .

[67]  Peter Shirley,et al.  Realistic ray tracing , 2000 .

[68]  Andreas Pfahl,et al.  Survey of Heliostat Concepts for Cost Reduction , 2014 .

[69]  Joe Coventry,et al.  Heliostat cost reduction - where to now? , 2014 .

[70]  Gregory J. Kolb,et al.  Power Tower Technology Roadmap and Cost Reduction Plan , 2011 .

[71]  J. D. Hankins,et al.  User's guide for MIRVAL: a computer code for comparing designs of heliostat-receiver optics for central receiver solar power plants , 1979 .

[72]  J. Larmuth Heliostat cost reduction methods applied to a small heliostat , 2015 .

[73]  F. Biggs,et al.  Helios model for the optical behavior of reflecting solar concentrators , 1979 .

[74]  Eric P. Lafortune,et al.  Mathematical Models and Monte Carlo Algorithms for Physically Based Rendering , 1995 .

[75]  Robert Pitz-Paal,et al.  A New Fast Ray Tracing Tool for High-Precision Simulation of Heliostat Fields , 2009 .

[76]  R. B. Diver,et al.  Sandwich construction solar structural facets , 1998 .

[77]  R. M. Houser,et al.  Testing and evaluation of large-area heliostats for solar thermal applications , 1993 .

[78]  P. K. Falcone A handbook for solar central receiver design , 1986 .

[79]  Lorin L. Vant-Hull,et al.  Solar Power Plants: Fundamentals, Technology, Systems, Economics , 1991 .

[80]  B L Kistler,et al.  A user's manual for DELSOL3: A computer code for calculating the optical performance and optimal system design for solar thermal central receiver plants , 1986 .

[81]  Sebastian-James Bode,et al.  REVIEW OF OPTICAL SOFTWARE FOR USE IN CONCENTRATING SOLAR POWER SYSTEMS , 2012 .

[82]  Jean-François Cornet,et al.  Monte Carlo advances and concentrated solar applications , 2014 .

[83]  A. Imhof,et al.  Flux Density Distribution in the Focal Region of a Solar Concentrator System , 1991 .

[84]  P. A. Pilavachi Mini- and micro-gas turbines for combined heat and power , 2002 .

[85]  C. W. Lopez,et al.  Performance of the Southern California Edison Company Stirling dish , 1993 .

[86]  Abraham Kribus,et al.  A solar-driven combined cycle power plant , 1998 .

[87]  Frédérik Thiery,et al.  Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy: Application to THEMIS solar tower , 2013 .

[88]  Paul Gauche,et al.  Sensitivity analysis of a curved heliostat facet profile , 2012 .

[89]  Charles E. Andraka,et al.  A Cost/Performance Evaluation of Advanced Low-Cost Heliostat Reflective Facets. , 2013 .

[90]  Bruno D’Aguanno,et al.  CRS4-2: A numerical code for the calculation of the solar power collected in a central receiver syst , 2011 .

[91]  C. Dey,et al.  Sunshape distributions for terrestrial solar simulations , 2003 .

[92]  Stephen R. Swanson,et al.  Introduction to Design and Analysis With Advanced Composite Materials , 1997 .

[93]  Andreas Pfahl,et al.  Wind loads on heliostats and photovoltaic trackers of various aspect ratios , 2011 .

[94]  A. Kribus,et al.  Performance of the Directly-Irradiated Annular Pressurized Receiver (DIAPR) Operating at 20 Bar and 1,200°C , 2001 .

[95]  E. A. Igel,et al.  Optical analysis of solar facility heliostats , 1979 .

[96]  M. Iqbal An introduction to solar radiation , 1983 .

[97]  Nate Blair,et al.  Solar Advisor Model User Guide for Version 2.0 , 2008 .

[99]  G. Nemes,et al.  New asymptotic expansion for the Gamma function , 2010 .

[100]  Peter Bajorski Statistics for Imaging, Optics, and Photonics , 2011 .

[101]  Asger Dam Hoedt Efficient Ray Tracing of Dynamic Scenes on the GPU , 2012 .

[102]  C L Mavis A description and assessment of heliostat technology , 1989 .

[103]  J. E. Parrott,et al.  Theoretical upper limit to the conversion efficiency of solar energy , 1978 .

[104]  K. Lovegrove,et al.  Concentrating Solar Power Technology , 2012 .

[105]  R. B. Pettit,et al.  Characterization of the reflected beam profile of solar mirror materials , 1977 .

[106]  Ari Rabl,et al.  Active solar collectors and their applications , 1985 .

[107]  Gregory J. Kolb,et al.  Heliostat Cost Reduction Study , 2007 .

[108]  Gerhard Weinrebe,et al.  Towards Holistic Power Tower System Optimization , 2014 .

[109]  Robert Pitz-Paal,et al.  Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators , 2006 .

[110]  F. Biggs,et al.  HELIOS: A computational model for solar concentrators , 1977 .

[111]  A. K. Pierce,et al.  Solar limb darkening , 1977 .

[113]  Mathias Paulin,et al.  Hybrid CPU/GPU KD-Tree Construction for Versatile Ray Tracing , 2012, Eurographics.

[114]  Roberto Grena,et al.  An algorithm for the computation of the solar position , 2008 .

[115]  F. Biggs,et al.  User's guide to HELIOS: a computer program for modeling the optical behavior of reflecting solar concentrators. Part I. Introduction and code input , 1981 .

[116]  F. Lipps An analytical integration of the solar flux density due to rectangular mirrors , 1974 .

[117]  Akiba Segal,et al.  COMPARATIVE PERFORMANCES OF `TOWER-TOP' AND `TOWER-REFLECTOR' CENTRAL SOLAR RECEIVERS , 1999 .

[118]  Hadrien Benoit,et al.  Validation of a Monte Carlo Integral Formulation Applied to Solar Facility Simulations and Use of Sensitivities , 2015 .

[119]  Fermín Mallor,et al.  Comparison of Heliostat Field Layout Design Methodologies and Impact on Power Plant Efficiency , 2015 .

[120]  James Spelling,et al.  Hybrid Solar Gas-Turbine Power Plants : A Thermoeconomic Analysis , 2013 .

[121]  David R. Mills,et al.  Heliostats for maximum ground coverage , 2004 .

[122]  K W Battleson Solar power tower design guide: Solar thermal central receiver power systems. A source of electricity and/or process heat , 1981 .

[123]  Clifford K. Ho,et al.  Evaluation of Solar Optical Modeling Tools for Modeling Complex Receiver Geometries , 2014 .

[124]  Paul Comley,et al.  A Comparison of Polymer Film and Glass Collectors for Concentrating Solar Power , 2014 .

[125]  Terry S. Mast,et al.  Telescope Mirror Supports: Plate Deflections On Point Supports , 1982, Astronomical Telescopes and Instrumentation.

[126]  Paul Gauché,et al.  Influence of Canting Mechanism and Facet Profile on Heliostat Field Performance , 2014 .

[127]  Cole Boulevard,et al.  Executive Summary: Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts , 2003 .

[128]  Annemarie Grobler,et al.  Aiming strategies for small central receiver systems , 2015 .

[129]  Rama Chellappa,et al.  A Method for Enforcing Integrability in Shape from Shading Algorithms , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[130]  M. Schubnell,et al.  Sunshape and its influence on the flux distribution in imaging solar concentrators , 1992 .

[131]  Abraham Kribus,et al.  Comparison of Two Sun Tracking Methods in the Application of a Heliostat Field , 2004 .

[132]  F. W. Lipps,et al.  A solar flux density calculation for a solar tower concentrator using a two-dimensional Hermite function expansion , 1977 .

[133]  Andrew S. Glassner,et al.  Principles of Digital Image Synthesis , 1995 .

[134]  John G. Georgiadis,et al.  Caustics as an Alternate of Ray Tracing to Evaluate Heliostat Mirrors , 2013 .

[135]  F. Dinter,et al.  Incidence angle effects on circular Gaussian flux density distributions for heliostat imaging , 2016 .

[136]  Edgar Teufel,et al.  Comparison and Optimization of Heliostat Canting Methods , 2007 .

[137]  Harald Ries,et al.  An astigmatic corrected target-aligned heliostat for high concentration , 1995 .

[138]  Brian D. Iverson,et al.  Review of high-temperature central receiver designs for concentrating solar power , 2014 .

[139]  James A. Harris,et al.  Focal plane flux distributions produced by solar concentrating reflectors , 1981 .

[140]  Aron Dobos,et al.  SolTrace: A Ray-Tracing Code for Complex Solar Optical Systems , 2013 .