Creep behavior of heat resistant Al–Cu–Mn alloys strengthened by fine (θ′) and coarse (Al20Cu2Mn3) second phase particles

[1]  S. Dar,et al.  Effect of Cu and Mn content on solidification microstructure, T-phase formation and mechanical property of Al Cu Mn alloys , 2019, Journal of Alloys and Compounds.

[2]  Z. Cao,et al.  Microstructures, mechanical properties and creep behavior of a Mg−3Yb−0.6Zn−0.4Zr casting alloy , 2019, Materials Science and Engineering: A.

[3]  A. Mondal,et al.  Microstructure and impression creep characteristics of squeeze-cast AZ91 magnesium alloy containing Ca and/or Bi , 2019, Materials Science and Engineering: A.

[4]  A. Mondal,et al.  Influence of SiC nanoparticles addition on microstructure and creep behavior of squeeze-cast AZ91-Ca-Sb magnesium alloy , 2018 .

[5]  S. Spigarelli,et al.  Basic creep modelling of aluminium , 2018 .

[6]  Rui Yang,et al.  Enhanced ambient temperature creep resistance of α/β-Ti alloys induced by minor Fe , 2017 .

[7]  Bin Wang,et al.  Low-temperature creep behavior and microstructural evolution of 8030 aluminum cables , 2017 .

[8]  F. Qiu,et al.  Superior creep resistance of 0.3 wt% nano-sized TiCp/Al-Cu composite , 2017 .

[9]  W. Ding,et al.  Microstructure, tensile properties and creep behavior of Al-12Si-3.5Cu-2Ni-0.8Mg alloy produced by different casting technologies , 2017, Journal of Materials Science & Technology.

[10]  Xian‐Cheng Zhang,et al.  Effects of two-stage creep-aging on precipitates of an Al–Cu–Mg alloy , 2014 .

[11]  Z. Xiliang,et al.  Creep behavior and microstructural evolution of deformed Al–Cu–Mg–Ag heat resistant alloy , 2014 .

[12]  Constantinos Soutis,et al.  Recent developments in advanced aircraft aluminium alloys , 2014 .

[13]  K. Sawada,et al.  Change of precipitate free zone during long-term creep in 2.25Cr–1Mo steel , 2014 .

[14]  A. Sepúlveda,et al.  Creep behavior of two Cu-2 vol% TiC alloys obtained by reaction milling and extrusion , 2013 .

[15]  Y. Lin,et al.  Effect of creep-aging on precipitates of 7075 aluminum alloy , 2013 .

[16]  Yanjun Qi,et al.  Tensile creep behavior of heat-treated TC11 titanium alloy at 450–550°C , 2013 .

[17]  Y. Lin,et al.  Precipitation hardening of 2024-T3 aluminum alloy during creep aging , 2013 .

[18]  Y. Park,et al.  Effect of solution treatment and artificial aging on microstructure and mechanical properties of Al−Cu alloy , 2013 .

[19]  Y. Lin,et al.  Precipitation in Al–Cu–Mg alloy during creep exposure , 2012 .

[20]  S. Babcock,et al.  Creep rupture behavior of semi-solid cast 7075-T6 Al alloy , 2012 .

[21]  G. González-Doncel,et al.  A unified description of solid solution creep strengthening in Al–Mg alloys , 2012 .

[22]  R. Mahmudi,et al.  Impression creep behavior of a Cu–6Ni–2Mn–2Sn–2Al alloy , 2012 .

[23]  Yulei Chen,et al.  Constitutive equations of the minimum creep rate for 9% Cr heat resistant steels , 2012 .

[24]  F. Qiu,et al.  Effects of La addition on the elevated temperature properties of the casting Al–Cu alloy , 2011 .

[25]  D. Rojas,et al.  Design and characterization of microstructure evolution during creep of 12% Cr heat resistant steels , 2010 .

[26]  M. Wan,et al.  Constitutive equations in creep of 7B04 aluminum alloys , 2010 .

[27]  F. Qiu,et al.  High creep resistance behavior of the casting Al–Cu alloy modified by La , 2009 .

[28]  H. El-Sayed,et al.  Steady state creep during transformation in Al–1 wt.%Cu alloy , 2009 .

[29]  R. Lakes,et al.  Creep and creep recovery of cast aluminum alloys , 2009 .

[30]  W. Blum,et al.  Dislocation mechanics of creep , 2009 .

[31]  P. J. Scharning,et al.  Creep and creep fracture of commercial aluminium alloys , 2008, Journal of Materials Science.

[32]  A. A. El-Rehim,et al.  Effect of superimposed oscillations on creep behaviour of Al – 2 4·.5Cu and Al – 2 4·5Cu – 2 0·1In (wt-%) alloys containing θ′ precipitates , 2007 .

[33]  B. Wilshire,et al.  Creep and creep fracture of polycrystalline copper , 2007 .

[34]  Xueyuan Feng,et al.  Microstructure and tensile creep behavior of Mg–4Al based magnesium alloys with alkaline-earth elements Sr and Ca additions , 2006 .

[35]  D. Seidman,et al.  Criteria for developing castable, creep-resistant aluminum-based alloys – A review , 2006, International Journal of Materials Research.

[36]  O. Sherby,et al.  Rate-controlling processes in creep of subgrain containing aluminum materials , 2005 .

[37]  Y. Chang,et al.  Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation , 2003 .

[38]  M. E. Kassner,et al.  Creep cavitation in metals , 2003 .

[39]  J. Evans,et al.  Creep resistant aluminium alloys and their applications , 2003 .

[40]  Terence G. Langdon,et al.  Creep at low stresses: An evaluation of diffusion creep and Harper-Dorn creep as viable creep mechanisms , 2002 .

[41]  E. Lavernia,et al.  Creep behavior of a cryomilled ultrafine-grained Al–4% Mg alloy , 2000 .

[42]  M. Kenawy,et al.  Effect of Superimposed Low Frequency Oscillations on the Static Creep Behaviour of Al–1 wt% Si and Al–1 wt% Si–0.1 wt% Zr–0.1 wt% Ti Alloys , 1997 .

[43]  M. Morris Creep deformation of an aluminium alloy with intermetallic particles , 1992 .

[44]  F. Mohamed,et al.  Creep and ductility in an Al-Cu solid-solution alloy , 1987 .

[45]  F. Mohamed,et al.  Effect of stress reductions on the stress exponent and subgrain size in an Al-Zn alloy , 1983 .

[46]  M. Ashby,et al.  Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics , 1982 .

[47]  F. Mohamed,et al.  Correlation between creep behavior and substructure in an Al-3at.%Mg solid solution alloy , 1982 .

[48]  J. E. Dorn,et al.  Viscous glide, dislocation climb and newtonian viscous deformation mechanisms of high temperature creep in Al-3Mg , 1972 .

[49]  Z. Nie,et al.  Characteristic microstructure and microstructure evolution in Al–Cu–Mn alloy under projectile impact , 2012 .

[50]  A. Reddy Fatigue and creep deformed microstructures of aged alloys based on Al-4%Cu-0.3%Mg , 2008 .

[51]  E. Sato,et al.  Distinguishing the ambient-temperature creep region in a deformation mechanism map of annealed CP-Ti , 2006 .