The population genetics of antibiotic resistance: integrating molecular mechanisms and treatment contexts

Despite efforts from a range of disciplines, our ability to predict and combat the evolution of antibiotic resistance in pathogenic bacteria is limited. This is because resistance evolution involves a complex interplay between the specific drug, bacterial genetics and both natural and treatment ecology. Incorporating details of the molecular mechanisms of drug resistance and ecology into evolutionary models has proved useful in predicting the dynamics of resistance evolution. However, putting these models to practical use will require extensive collaboration between mathematicians, molecular biologists, evolutionary ecologists and clinicians.

[1]  R. Kishony,et al.  Nonoptimal Microbial Response to Antibiotics Underlies Suppressive Drug Interactions , 2009, Cell.

[2]  L. Chao,et al.  The Coupon Collector and the Suppressor Mutation , 2005, Genetics.

[3]  Julian Adams,et al.  COEVOLUTION IN BACTERIAL‐PLASMID POPULATIONS , 1991, Evolution; international journal of organic evolution.

[4]  Brian K Shoichet,et al.  Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. , 2002, Journal of molecular biology.

[5]  Danna R. Gifford,et al.  The Properties of Adaptive Walks in Evolving Populations of Fungus , 2009, PLoS biology.

[6]  P. Keightley,et al.  A Comparison of Models to Infer the Distribution of Fitness Effects of New Mutations , 2013, Genetics.

[7]  E. Feil,et al.  Population structure and evolutionary dynamics of pathogenic bacteria , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[8]  O. Berg,et al.  Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. , 2000, Science.

[9]  Carl T. Bergstrom,et al.  Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Diarmaid Hughes,et al.  Antibiotic resistance and its cost: is it possible to reverse resistance? , 2010, Nature Reviews Microbiology.

[11]  J. Gillespie A simple stochastic gene substitution model. , 1983, Theoretical population biology.

[12]  Zaid Abdo,et al.  Combining Mathematical Models and Statistical Methods to Understand and Predict the Dynamics of Antibiotic-Sensitive Mutants in a Population of Resistant Bacteria During Experimental Evolution , 2004, Genetics.

[13]  B. Shoichet,et al.  Structural bases for stability-function tradeoffs in antibiotic resistance. , 2010, Journal of molecular biology.

[14]  A. Buckling,et al.  The Distribution of Fitness Effects of Beneficial Mutations in Pseudomonas aeruginosa , 2009, PLoS genetics.

[15]  B. Levin,et al.  Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. , 2000, Genetics.

[16]  Roy Kishony,et al.  Drug interactions and the evolution of antibiotic resistance , 2009, Nature Reviews Microbiology.

[17]  F. Taddei,et al.  Plasmids spread very fast in heterogeneous bacterial communities. , 2002, Genetics.

[18]  H. A. Orr,et al.  THE POPULATION GENETICS OF ADAPTATION: THE ADAPTATION OF DNA SEQUENCES , 2002, Evolution; international journal of organic evolution.

[19]  F. Cohan,et al.  AMELIORATION OF THE DELETERIOUS PLEIOTROPIC EFFECTS OF AN ADAPTIVE MUTATION IN BACILLUS SUBTILIS , 1994, Evolution; international journal of organic evolution.

[20]  Rafael Sanjuán,et al.  A Network Model for the Correlation between Epistasis and Genomic Complexity , 2008, PloS one.

[21]  Linus Sandegren,et al.  Bacterial gene amplification: implications for the evolution of antibiotic resistance , 2009, Nature Reviews Microbiology.

[22]  A. Oliver,et al.  High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. , 2000, Science.

[23]  G. Bell,et al.  A Reservoir of Drug-Resistant Pathogenic Bacteria in Asymptomatic Hosts , 2008, PloS one.

[24]  D. Andersson,et al.  Persistence of antibiotic resistant bacteria. , 2003, Current opinion in microbiology.

[25]  B. Levin,et al.  Adaptation to the fitness costs of antibiotic resistance in Escherichia coli , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  F. Baquero,et al.  Selection of very small differences in bacterial evolution. , 1998, International microbiology : the official journal of the Spanish Society for Microbiology.

[27]  Fernando Baquero,et al.  Predicting antibiotic resistance , 2007, Nature Reviews Microbiology.

[28]  A. Buckling,et al.  Hypermutability and Compensatory Adaptation in Antibiotic‐Resistant Bacteria , 2010, The American Naturalist.

[29]  N. Colegrave,et al.  Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa , 2010, Proceedings of the Royal Society B: Biological Sciences.

[30]  H. A. Orr,et al.  The genetic theory of adaptation: a brief history , 2005, Nature Reviews Genetics.

[31]  Andrew R. Francis,et al.  The epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis , 2009, Proceedings of the National Academy of Sciences.

[32]  R. Lenski,et al.  Pervasive compensatory adaptation in Escherichia coli , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[33]  G. Bell,et al.  Parallel evolution of multidrug-resistance in Salmonella enterica isolated from swine. , 2008, FEMS microbiology letters.

[34]  D. Andersson,et al.  Whole-genome mutational biases in bacteria , 2008, Proceedings of the National Academy of Sciences.

[35]  F. M. Stewart,et al.  The kinetics of conjugative plasmid transmission: fit of a simple mass action model. , 1979, Plasmid.

[36]  H. A. Orr,et al.  The distribution of fitness effects among beneficial mutations. , 2003, Genetics.

[37]  S. Palumbi,et al.  Humans as the world's greatest evolutionary force. , 2001, Science.

[38]  H. A. Orr,et al.  A General Extreme Value Theory Model for the Adaptation of DNA Sequences Under Strong Selection and Weak Mutation , 2008, Genetics.

[39]  S. Levy,et al.  Antibacterial resistance worldwide: causes, challenges and responses , 2004, Nature Medicine.

[40]  B. Levin,et al.  The biological cost of antibiotic resistance. , 1999, Current opinion in microbiology.

[41]  Julian Parkhill,et al.  Evolution of MRSA During Hospital Transmission and Intercontinental Spread , 2010, Science.

[42]  L. Fernandes,et al.  The evolution of a conjugative plasmid and its ability to increase bacterial fitness , 2005, Biology Letters.

[43]  Jukka Corander,et al.  Hyper-Recombination, Diversity, and Antibiotic Resistance in Pneumococcus , 2009, Science.

[44]  S. Elena,et al.  Epistasis and the Adaptability of an RNA Virus , 2005, Genetics.

[45]  R. Anderson,et al.  Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[46]  R. Kishony,et al.  Chemical decay of an antibiotic inverts selection for resistance , 2010, Nature chemical biology.

[47]  J. Gillespie MOLECULAR EVOLUTION OVER THE MUTATIONAL LANDSCAPE , 1984, Evolution; international journal of organic evolution.

[48]  Edda Klipp,et al.  Systems Biology , 1994 .

[49]  Carl T. Bergstrom,et al.  The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[50]  D. Andersson,et al.  Virulence of antibiotic-resistant Salmonella typhimurium. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Rafael Sanjuán,et al.  The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  M. Lipsitch,et al.  The rise and fall of antimicrobial resistance. , 2001, Trends in microbiology.

[53]  H. Humphreys,et al.  Environmental reservoirs of methicillin-resistant Staphylococcus aureus in isolation rooms: correlation with patient isolates and implications for hospital hygiene. , 2006, The Journal of hospital infection.

[54]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[55]  Martin T. Ferris,et al.  Beneficial Fitness Effects Are Not Exponential for Two Viruses , 2008, Journal of Molecular Evolution.

[56]  G. Church,et al.  Functional Characterization of the Antibiotic Resistance Reservoir in the Human Microflora , 2009, Science.

[57]  Arkady Mustaev,et al.  Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase , 2001, Cell.

[58]  Remy Chait,et al.  Drug interactions modulate the potential for evolution of resistance , 2008, Proceedings of the National Academy of Sciences.

[59]  G. Orrù,et al.  Drug Resistance Evolution of a Mycobacterium tuberculosis Strain from a Noncompliant Patient , 2005, Journal of Clinical Microbiology.

[60]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[61]  M. DePristo,et al.  Missense meanderings in sequence space: a biophysical view of protein evolution , 2005, Nature Reviews Genetics.

[62]  D. Hartl,et al.  Accelerated evolution of resistance in multidrug environments , 2008, Proceedings of the National Academy of Sciences.

[63]  Nicole Kemper,et al.  Veterinary antibiotics in the aquatic and terrestrial environment , 2008 .

[64]  George M Church,et al.  Tuberculosis Drug Resistance Mutation Database , 2009, PLoS medicine.

[65]  A. Buckling,et al.  The rate of environmental change drives adaptation to an antibiotic sink , 2008, Journal of evolutionary biology.

[66]  J. Boyce,et al.  Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat , 2006, The Lancet.

[67]  Kornelia Smalla,et al.  Occurrence and reservoirs of antibiotic resistance genes in the environment , 2002 .

[68]  P. Turner Phenotypic Plasticity in Bacterial Plasmids , 2004, Genetics.

[69]  J. Sánchez-Payá,et al.  Nosocomial infection surveillance and control: current situation in Spanish hospitals. , 2009, The Journal of hospital infection.

[70]  D. Hughes,et al.  Sampling the Antibiotic Resistome , 2006, Science.

[71]  G. Stotzky,et al.  Survival of plasmid-containing strains ofEscherichia coli in soil: Effect of plasmid size and nutrients on survival of hosts and maintenance of plasmids , 1986, Current Microbiology.

[72]  M. Madigan,et al.  Brock Biology of Microorganisms , 1996 .

[73]  A. Maxwell,et al.  For the record: Temperature‐sensitive suppressor mutations of the Escherichia coli DNA gyrase B protein , 2000, Protein science : a publication of the Protein Society.

[74]  Joost Schymkowitz,et al.  The stability effects of protein mutations appear to be universally distributed. , 2007, Journal of molecular biology.

[75]  D. Andersson,et al.  Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa. , 2005, The Journal of antimicrobial chemotherapy.

[76]  P Huovinen,et al.  The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. Finnish Study Group for Antimicrobial Resistance. , 1997, The New England journal of medicine.

[77]  D. Nathwani,et al.  Antibiotic cycling or rotation: a systematic review of the evidence of efficacy. , 2005, The Journal of antimicrobial chemotherapy.

[78]  R. Kishony,et al.  Chemical decay of an antibiotic inverts selection for resistance. , 2010, Nature chemical biology.

[79]  A. Buckling,et al.  The Beagle in a bottle , 2009, Nature.

[80]  G. Schreiber,et al.  Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details. , 2009, Protein engineering, design & selection : PEDS.

[81]  M. Moran,et al.  A brief history. , 2004, Journal of the Medical Association of Georgia.

[82]  G. Bell,et al.  Genotypic diversity and antimicrobial resistance in asymptomatic Salmonella enterica serotype Typhimurium DT104. , 2007, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[83]  D. Andersson,et al.  Biological cost and compensatory evolution in fusidic acid‐resistant Staphylococcus aureus , 2001, Molecular microbiology.

[84]  Wayne L. Nicholson,et al.  Uncovering New Metabolic Capabilities of Bacillus subtilis Using Phenotype Profiling of Rifampin-Resistant rpoB Mutants , 2007, Journal of bacteriology.

[85]  C. Chang,et al.  Site-specific and compensatory mutations imply unexpected pathways for proton delivery to the QB binding site of the photosynthetic reaction center. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[86]  R. MacLean,et al.  The cost of multiple drug resistance in Pseudomonas aeruginosa , 2009, Journal of evolutionary biology.

[87]  D. Andersson,et al.  Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution. , 2004, Research in microbiology.

[88]  Clifton E. Barry,et al.  Compensatory ahpC Gene Expression in Isoniazid-Resistant Mycobacterium tuberculosis , 1996, Science.

[89]  C. Walsh Molecular mechanisms that confer antibacterial drug resistance , 2000, Nature.

[90]  D. Andersson,et al.  Compensatory evolution reveals functional interactions between ribosomal proteins S12, L14 and L19. , 2007, Journal of molecular biology.

[91]  Florence Debarre,et al.  Evolutionary Epidemiology of Drug-Resistance in Space , 2009, PLoS Comput. Biol..

[92]  Floyd E Romesberg,et al.  Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation , 2007, Nature Chemical Biology.

[93]  D. Andersson,et al.  Effect of rpoB Mutations Conferring Rifampin Resistance on Fitness of Mycobacterium tuberculosis , 2004, Antimicrobial Agents and Chemotherapy.

[94]  B. Levin,et al.  Fitness Costs of Fluoroquinolone Resistance in Streptococcus pneumoniae , 2006, Antimicrobial Agents and Chemotherapy.

[95]  Christopher T. Walsh,et al.  Antibiotics for Emerging Pathogens , 2009, Science.

[96]  K. Drlica The mutant selection window and antimicrobial resistance. , 2003, The Journal of antimicrobial chemotherapy.

[97]  David L. Smith,et al.  Persistent colonization and the spread of antibiotic resistance in nosocomial pathogens: resistance is a regional problem. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[98]  L. Serrano,et al.  Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. , 2002, Journal of molecular biology.

[99]  J. Bull,et al.  Experimental genomic evolution: extensive compensation for loss of DNA ligase activity in a virus. , 2002, Molecular biology and evolution.

[100]  C. D. Long,et al.  The Competitive Cost of Antibiotic Resistance in Mycobacterium tuberculosis , 2006, Science.

[101]  O. Berg,et al.  Reducing the fitness cost of antibiotic resistance by amplification of initiator tRNA genes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[102]  Lars Liljas,et al.  Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium , 2002, Molecular microbiology.

[103]  C. Pál,et al.  Coevolution with viruses drives the evolution of bacterial mutation rates , 2007, Nature.

[104]  D. Andersson,et al.  Multiple mechanisms to ameliorate the fitness burden of mupirocin resistance in Salmonella typhimurium , 2007, Molecular microbiology.

[105]  R Palacios,et al.  Gene amplification and genomic plasticity in prokaryotes. , 1997, Annual review of genetics.

[106]  Timothy C. Reluga,et al.  Simple models of antibiotic cycling. , 2005, Mathematical medicine and biology : a journal of the IMA.

[107]  Cecilia Dahlberg,et al.  Amelioration of the cost of conjugative plasmid carriage in Eschericha coli K12. , 2003, Genetics.

[108]  P. Bennett,et al.  Rifampicin resistance and its fitness cost in Enterococcus faecium. , 2004, The Journal of antimicrobial chemotherapy.

[109]  Burt,et al.  Genes in Conflict , 2008 .

[110]  W. L. Payne,et al.  High Mutation Frequencies Among Escherichia coli and Salmonella Pathogens , 1996, Science.

[111]  Jeffrey H. Miller,et al.  Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. , 2003, DNA repair.

[112]  H. A. Orr,et al.  THE POPULATION GENETICS OF ADAPTATION: THE DISTRIBUTION OF FACTORS FIXED DURING ADAPTIVE EVOLUTION , 1998, Evolution; international journal of organic evolution.

[113]  N. Ricker,et al.  Antagonism between Two Mechanisms of Antifungal Drug Resistance , 2006, Eukaryotic Cell.

[114]  Nigel F. Delaney,et al.  Darwinian Evolution Can Follow Only Very Few Mutational Paths to Fitter Proteins , 2006, Science.

[115]  M G Reynolds,et al.  Compensatory evolution in rifampin-resistant Escherichia coli. , 2000, Genetics.

[116]  Alexander Tomasz,et al.  Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing , 2007, Proceedings of the National Academy of Sciences.

[117]  M. Bailey,et al.  The transfer dynamics of Pseudomonas sp. plasmid pQBR11 in biofilms. , 2002, FEMS microbiology ecology.

[118]  J. Martínez The role of natural environments in the evolution of resistance traits in pathogenic bacteria , 2009, Proceedings of the Royal Society B: Biological Sciences.

[119]  F. Taddei,et al.  The rise and fall of mutator bacteria. , 2001, Current opinion in microbiology.

[120]  D. Andersson The biological cost of mutational antibiotic resistance: any practical conclusions? , 2006, Current opinion in microbiology.

[121]  A. Sousa,et al.  Positive Epistasis Drives the Acquisition of Multidrug Resistance , 2009, PLoS genetics.

[122]  T. Lenormand,et al.  A GENERAL MULTIVARIATE EXTENSION OF FISHER'S GEOMETRICAL MODEL AND THE DISTRIBUTION OF MUTATION FITNESS EFFECTS ACROSS SPECIES , 2006, Evolution; international journal of organic evolution.

[123]  Didier Mazel,et al.  Integrons: agents of bacterial evolution , 2006, Nature Reviews Microbiology.

[124]  F. Taddei,et al.  Highly variable mutation rates in commensal and pathogenic Escherichia coli. , 1997, Science.

[125]  E. Szathmáry,et al.  Do deleterious mutations act synergistically? Metabolic control theory provides a partial answer. , 1993, Genetics.

[126]  R. Kassen,et al.  Distribution of fitness effects among beneficial mutations before selection in experimental populations of bacteria , 2006, Nature Genetics.

[127]  J. E. Bouma,et al.  Evolution of a bacteria/plasmid association , 1988, Nature.

[128]  A. Liljas,et al.  The dynamic structure of EF-G studied by fusidic acid resistance and internal revertants. , 1996, Journal of molecular biology.

[129]  A. Buckling,et al.  Source–sink dynamics shape the evolution of antibiotic resistance and its pleiotropic fitness cost , 2007, Proceedings of the Royal Society B: Biological Sciences.