A Self-Learning Network Anomaly Detection System using Majority Voting

[1]  Dorothy E. Denning,et al.  An Intrusion-Detection Model , 1987, IEEE Transactions on Software Engineering.

[2]  Tadeusz Pietraszek,et al.  Using Adaptive Alert Classification to Reduce False Positives in Intrusion Detection , 2004, RAID.

[3]  Jaideep Srivastava,et al.  Data Mining for Network Intrusion Detection , 2002 .

[4]  Georg Carle,et al.  Real-time Analysis of Flow Data for Network Attack Detection , 2007, 2007 10th IFIP/IEEE International Symposium on Integrated Network Management.

[5]  Salvatore J. Stolfo,et al.  Adaptive Anomaly Detection via Self-calibration and Dynamic Updating , 2009, RAID.

[6]  Peter J. Bentley,et al.  Towards an artificial immune system for network intrusion detection: an investigation of dynamic clonal selection , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[7]  Christopher Krügel,et al.  Intrusion Detection and Correlation - Challenges and Solutions , 2004, Advances in Information Security.

[8]  Bruce A. Mah,et al.  An empirical model of HTTP network traffic , 1997, Proceedings of INFOCOM '97.

[9]  Gjergji Kasneci,et al.  Crowd IQ: aggregating opinions to boost performance , 2012, AAMAS.

[10]  James Won-Ki Hong,et al.  A flow-based method for abnormal network traffic detection , 2004, 2004 IEEE/IFIP Network Operations and Management Symposium (IEEE Cat. No.04CH37507).

[11]  Carrie Gates,et al.  Challenging the anomaly detection paradigm: a provocative discussion , 2006, NSPW '06.