Mars 2020 Surface Mission Performance Analysis : Part 2 . Surface Traversability

The Mars 2020 Rover Mission (M2020) is characterized by demanding requirement on the distance and time for traveling between scientific Regions Of Interest (ROIs). As a result, surface traversability is one of the major driving factors for the landing site selection of M2020. With the newly developed Mars Terrain Traversability analysis Tools (MTTT), we performed traversability analysis of the eight candidate landing sites with an unprecedented granularity. This paper describes the MTTT analysis capabilityies, as well as how the MTTT capabilities were used to downselect from eight to three candidate landing sites for further evaluation.

[1]  R. Jaumann,et al.  HRSC: the High Resolution Stereo Camera of Mars Express , 2004 .

[2]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[3]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  M. Golombek,et al.  Size‐frequency distributions of rocks on Mars and Earth analog sites: Implications for future landed missions , 1997 .

[5]  P. Burrough,et al.  Principles of geographical information systems , 1998 .

[6]  Masahiro Ono,et al.  SPOC: Deep Learning-based Terrain Classification for Mars Rover Missions , 2016 .

[7]  A. McEwen,et al.  Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter‐scale slopes of candidate Phoenix landing sites , 2008 .

[8]  Raymond E. Arvidson,et al.  Size-frequency distributions of rocks on the northern plains of Mars with special reference to Phoenix landing surfaces , 2008 .

[9]  K. Gwinner,et al.  Selection of the InSight Landing Site , 2017 .

[10]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[11]  H. J. Moore,et al.  Selection of the Mars Pathfinder landing site , 1997 .

[12]  A. Huertas,et al.  Detection and Characterization of Rocks and Rock Size-Frequency Distributions at the Final Four Mars Science Laboratory Landing Sites , 2012 .

[13]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  M. Watkins,et al.  Selection of the Mars Science Laboratory Landing Site , 2012 .

[15]  Masahiro Ono,et al.  Data-driven surface traversability analysis for Mars 2020 landing site selection , 2016, 2016 IEEE Aerospace Conference.

[16]  L. Edwards,et al.  Context Camera Investigation on board the Mars Reconnaissance Orbiter , 2007 .

[17]  N. Bridges,et al.  Selection of the Mars Exploration Rover landing sites , 2003 .