Conformal Surface Parameterization Using Euclidean Ricci Flow

Surface parameterization is a fundamental problem in graphics. Conformal surface parameterization is equivalent to finding a Riemannian metric on the surface, such that the metric is conformal to the original metric and induces zero Gaussian curvature for all interior points. Ricc i flow is a theoretic tool to compute such a conformal flat metric. This paper introduces an efficient and versatile parame terization algorithm based on Euclidean Ricci flow. The algorithm can parameterize surfaces with different topologi cal structures in an unified way. In addition, we can obtain a novel class of parameterization, which provides a conformal invariant of a surface that can be used as a surface signature.

[1]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[2]  William H. Press,et al.  Numerical recipes in C , 2002 .

[3]  A. Bobenko,et al.  Variational principles for circle patterns and Koebe’s theorem , 2002, math/0203250.

[4]  Craig Gotsman,et al.  Discrete one-forms on meshes and applications to 3D mesh parameterization , 2006, Comput. Aided Geom. Des..

[5]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[6]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[7]  W. Thurston The geometry and topology of 3-manifolds , 1979 .

[8]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[9]  Alla Sheffer,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003, ACM Trans. Graph..

[10]  Shing-Tung Yau,et al.  Global Conformal Parameterization , 2003, Symposium on Geometry Processing.

[11]  Hong Qin,et al.  Topology-driven surface mappings with robust feature alignment , 2005, VIS 05. IEEE Visualization, 2005..

[12]  Pierre Alliez,et al.  Periodic global parameterization , 2006, TOGS.

[13]  Kenneth Stephenson,et al.  A circle packing algorithm , 2003, Comput. Geom..

[14]  Xianfeng Gu,et al.  Computing surface hyperbolic structure and real projective structure , 2006, SPM '06.

[15]  Hugues Hoppe,et al.  Shape Compression using Spherical Geometry Images , 2005, Advances in Multiresolution for Geometric Modelling.

[16]  B. Rodin,et al.  The convergence of circle packings to the Riemann mapping , 1987 .

[17]  LévyBruno,et al.  Least squares conformal maps for automatic texture atlas generation , 2002 .

[18]  Peter Schröder,et al.  Discrete conformal mappings via circle patterns , 2005, TOGS.

[19]  Yalin Wang,et al.  Optimal global conformal surface parameterization , 2004, IEEE Visualization 2004.

[20]  Gregory Leibon Characterizing the Delaunay decompositions of compact hyperbolic surfaces , 2001, math/0103174.

[21]  Y. C. Verdière Un principe variationnel pour les empilements de cercles , 1991 .

[22]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[23]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[24]  Igor Rivin Euclidean Structures on Simplicial Surfaces and Hyperbolic Volume , 1994 .

[25]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[26]  Feng Luo,et al.  1 7 N ov 2 00 2 Combinatorial Ricci Flows on Surfaces , 2003 .

[27]  Alla Sheffer,et al.  Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening , 2001, Engineering with Computers.

[28]  Bruno Lévy,et al.  ABF++: fast and robust angle based flattening , 2005, TOGS.