Neural motion and evolutionary decision in robotic competition applied for molecular machine system design

Summary form only given. The author presents a new approach within advanced graphics simulations for the problem of nano-assembly automation and its application for nanomedicine. The problem under study concentrates its main focus on the design of autonomous nanorobots for assembly manipulation and the use of evolutionary competitive agents as a suitable way to warranty the robustness of such proposed model. Furthermore, the work presents also the use of neural networks as the most practical approach for the problem of robot motion optimisation using a sensor based system. Thereby the paper addresses distinct aspects of the main techniques required to achieve a successful nano-planning system design and its simulation with a real time 3D visualization.

[1]  N. Phan-Thien,et al.  The role of hydrodynamic interaction in the locomotion of microorganisms. , 1993, Biophysical journal.

[2]  Alex M. Andrew Nanomedicine, Volume 1: Basic Capabilities, by Robert A. Freitas Jr., Landes Bioscience, Austin, Texas, 1999, xxi + 509 pp., ISBN 1-57059-645-X Index (Hardback, $89.000) , 2000, Robotica.

[3]  David Baraff,et al.  Analytical methods for dynamic simulation of non-penetrating rigid bodies , 1989, SIGGRAPH.

[4]  M. Gao,et al.  Electric field directed layer-by-layer assembly of highly fluorescent CdTe nanoparticles. , 2001, Journal of nanoscience and nanotechnology.

[5]  Takaaki Ohishi,et al.  Using Genetic Algorithm and Simplex Method to Stabilize an Oil Treatment Plant Inlet Flow , 2000 .

[6]  Heinz Wörn,et al.  Parallel on-line motion planning for industrial robots , 1998 .

[7]  David J. Kruglinski,et al.  Programming Microsoft Visual C , 1998 .

[8]  Ralph C. Merkle A new family of six degrees of freedom positional devices , 1997 .

[9]  Sylvain Martel,et al.  NanoWalker: a fully autonomous highly integrated miniature robot for nanoscale measurements , 1999, Industrial Lasers and Inspection.

[10]  Hideki Hashimoto,et al.  Teleoperated Nano Scale Object Manipulation , 1999 .

[11]  Leonard M. Adleman,et al.  On constructing a molecular computer , 1995, DNA Based Computers.

[12]  Roland Stracke,et al.  Physical and technical parameters determining the functioning of a kinesin-based cell-free motor system , 2000 .

[13]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[14]  H. Berg,et al.  Dynamic properties of bacterial flagellar motors , 1974, Nature.

[15]  Errol Lewars,et al.  Computational chemistry , 2003 .

[16]  A. W. Czarnik,et al.  Combinatorial Organic Synthesis Using Parke-Davis's DIVERSOMER Method , 1996 .

[17]  Robert A. Freitas,et al.  Nanomedicine, Volume I: Basic Capabilities , 1999 .

[18]  Geoffrey E. Hinton,et al.  NeuroAnimator: fast neural network emulation and control of physics-based models , 1998, SIGGRAPH.

[19]  Klaus Gubernator,et al.  Optimization of the Biological Activity of Combinatorial Compound Libraries by a Genetic Algorithm , 1995 .

[20]  Aristides A. G. Requicha,et al.  Towards hierarchical nanoassembly , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[21]  K. Eric Drexler,et al.  Nanosystems - molecular machinery, manufacturing, and computation , 1992 .

[22]  Cara MacNish,et al.  From Nanotechnology to Nano-Planning , 1998 .

[23]  Tetsuo Asano,et al.  d1-optimal motion for a rod (extended abstract) , 1996, SCG '96.

[24]  Robert J. Hamers Molecular Engineering of Nanosystems , 2001 .

[25]  Thierry Siméon,et al.  Indoor navigation with uncertainty using sensor-based motions , 1997, Proceedings of International Conference on Robotics and Automation.

[26]  John F. Canny,et al.  Impulse-based simulation of rigid bodies , 1995, I3D '95.

[27]  Aristides A. G. Requicha,et al.  Automatic planning of nanoparticle assembly tasks , 2001, Proceedings of the 2001 IEEE International Symposium on Assembly and Task Planning (ISATP2001). Assembly and Disassembly in the Twenty-first Century. (Cat. No.01TH8560).

[28]  Louis L. Whitcomb,et al.  Underwater robotics: out of the research laboratory and into the field , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[29]  Masami Hagiya,et al.  From Molecular Computing to Molecular Programming , 2000, DNA Computing.

[30]  A. Goldbeter,et al.  Biochemical Oscillations And Cellular Rhythms: Contents , 1996 .

[31]  David Baraff,et al.  Fast contact force computation for nonpenetrating rigid bodies , 1994, SIGGRAPH.

[32]  Claus Ronald Kube,et al.  Collective robotics: from local perception to global action , 1998 .

[33]  A.C.D. Silva A virtual environment for evolutionary autonomous optimization of real time stochastic control design , 2002, Final Program and Abstracts on Information, Decision and Control.