Cooperative Compute-and-Forward

We propose a class of signaling schemes that leverage transmitter cooperation in wireless networks employing compute-and-forward or physical-layer network coding. We devise a lattice-coding approach to superposition block Markov encoding from which we construct a cooperative lattice coding strategy. Transmitters broadcast lattice codewords, decode each other's messages, and then cooperatively transmit resolution information which aids relays in decoding finite-field linear combinations of the incoming messages. We show that cooperation provides a substantial improvement in achievable computation rate and outage probability over noncooperative strategies. Using this strategy, we derive a new achievability scheme for the multiway relay channel, the rates of which are near capacity in many regimes and enjoy a diversity advantage over noncooperation.

[1]  Uri Erez,et al.  The Approximate Sum Capacity of the Symmetric Gaussian $K$ -User Interference Channel , 2014, IEEE Trans. Inf. Theory.

[2]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[3]  Behnaam Aazhang,et al.  Lattice Coding over the Relay Channel , 2011, 2011 IEEE International Conference on Communications (ICC).

[4]  Shuo-Yen Robert Li,et al.  Linear network coding , 2003, IEEE Trans. Inf. Theory.

[5]  Zhu Han,et al.  Improving Wireless Physical Layer Security via Cooperating Relays , 2010, IEEE Transactions on Signal Processing.

[6]  Michael Gastpar,et al.  Cooperative strategies and capacity theorems for relay networks , 2005, IEEE Transactions on Information Theory.

[7]  Natasha Devroye,et al.  Lattice Codes for the Gaussian Relay Channel: Decode-and-Forward and Compress-and-Forward , 2011, IEEE Transactions on Information Theory.

[8]  Behnaam Aazhang,et al.  Unchaining from the channel: Cooperative computation over multiple-access channels , 2011, 2011 IEEE Information Theory Workshop.

[9]  Suhas N. Diggavi,et al.  Approximately achieving Gaussian relay network capacity with lattice codes , 2010, 2010 IEEE International Symposium on Information Theory.

[10]  Rüdiger L. Urbanke,et al.  Lattice Codes Can Achieve Capacity on the AWGN Channel , 1998, IEEE Trans. Inf. Theory.

[11]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[12]  Shlomo Shamai,et al.  The Capacity Region of the Gaussian Multiple-Input Multiple-Output Broadcast Channel , 2006, IEEE Transactions on Information Theory.

[13]  Sae-Young Chung,et al.  Noisy Network Coding , 2010, IEEE Transactions on Information Theory.

[14]  Hans-Andrea Loeliger,et al.  Averaging bounds for lattices and linear codes , 1997, IEEE Trans. Inf. Theory.

[15]  Aylin Yener,et al.  Symmetric Capacity of the Gaussian Interference Channel With an Out-of-Band Relay to Within 1.15 Bits , 2012, IEEE Transactions on Information Theory.

[16]  Kwok Hung Li,et al.  Diversity-Multiplexing Tradeoff of Fading Interference Channels With Source Cooperation and Partial CSIT , 2011, IEEE Transactions on Information Theory.

[17]  Aaron B. Wagner On Distributed Compression of Linear Functions , 2011, IEEE Transactions on Information Theory.

[18]  Alexander Sprintson,et al.  Joint Physical Layer Coding and Network Coding for Bidirectional Relaying , 2008, IEEE Transactions on Information Theory.

[19]  Sennur Ulukus,et al.  Secrecy in Cooperative Relay Broadcast Channels , 2008, IEEE Transactions on Information Theory.

[20]  Hua Wang,et al.  Gaussian Interference Channel Capacity to Within One Bit , 2007, IEEE Transactions on Information Theory.

[21]  Michael Gastpar,et al.  Compute-and-Forward: Harnessing Interference Through Structured Codes , 2009, IEEE Transactions on Information Theory.

[22]  Michael Gastpar,et al.  MIMO compute-and-forward , 2009, 2009 IEEE International Symposium on Information Theory.

[23]  Suhas N. Diggavi,et al.  Wireless Network Information Flow: A Deterministic Approach , 2009, IEEE Transactions on Information Theory.

[24]  Yi Hong,et al.  Phase Precoding for the Compute-and-Forward Protocol , 2014, ArXiv.

[25]  Giuseppe Caire,et al.  Structured Lattice Codes for Some Two-User Gaussian Networks With Cognition, Coordination, and Two Hops , 2013, IEEE Transactions on Information Theory.

[26]  Sriram Vishwanath,et al.  On the secrecy rate of interference networks using structured codes , 2009, 2009 IEEE International Symposium on Information Theory.

[27]  Behnaam Aazhang,et al.  Low-Density Lattice Codes for Full-Duplex Relay Channels , 2015, IEEE Transactions on Wireless Communications.

[28]  Kwok Hung Li,et al.  Diversity-Multiplexing Tradeoff of Wireless Communication Systems With User Cooperation , 2011, IEEE Transactions on Information Theory.

[29]  Aylin Yener,et al.  Providing Secrecy With Structured Codes: Tools and Applications to Two-User Gaussian Channels , 2009, ArXiv.

[30]  Gregory W. Wornell,et al.  Cooperative diversity in wireless networks: Efficient protocols and outage behavior , 2004, IEEE Transactions on Information Theory.

[31]  S. Sandeep Pradhan,et al.  A proof of the existence of good nested lattices , 2007 .

[32]  Andrea J. Goldsmith,et al.  The multi-way relay channel , 2009, 2009 IEEE International Symposium on Information Theory.

[33]  T. Ho,et al.  On Linear Network Coding , 2010 .

[34]  Michael Gastpar,et al.  Integer-Forcing Linear Receivers: A New Low-Complexity MIMO Architecture , 2010, 2010 IEEE 72nd Vehicular Technology Conference - Fall.

[35]  Giuseppe Caire,et al.  Compute-and-Forward Strategies for Cooperative Distributed Antenna Systems , 2012, IEEE Transactions on Information Theory.

[36]  Gregory Poltyrev,et al.  On coding without restrictions for the AWGN channel , 1993, IEEE Trans. Inf. Theory.

[37]  Sae-Young Chung,et al.  Nested Lattice Codes for Gaussian Relay Networks With Interference , 2011, IEEE Transactions on Information Theory.

[38]  Sae-Young Chung,et al.  Capacity of Strong and Very Strong Gaussian Interference Relay-without-delay Channels , 2011, ArXiv.

[39]  Yi Hong,et al.  On the ergodic rate for compute-and-forward , 2012, 2012 International Symposium on Network Coding (NetCod).

[40]  Uri Erez,et al.  Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding , 2004, IEEE Transactions on Information Theory.

[41]  Amir K. Khandani,et al.  Communication Over MIMO X Channels: Interference Alignment, Decomposition, and Performance Analysis , 2008, IEEE Transactions on Information Theory.

[42]  Elza Erkip,et al.  User cooperation diversity. Part II. Implementation aspects and performance analysis , 2003, IEEE Trans. Commun..

[43]  Sae-Young Chung,et al.  Capacity of the Gaussian Two-Way Relay Channel to Within ${1\over 2}$ Bit , 2009, IEEE Transactions on Information Theory.

[44]  Elza Erkip,et al.  Interference Channel With an Out-of-Band Relay , 2010, IEEE Transactions on Information Theory.

[45]  Abhay Parekh,et al.  The Approximate Capacity of the Many-to-One and One-to-Many Gaussian Interference Channels , 2008, IEEE Transactions on Information Theory.

[46]  S. Sandeep Pradhan,et al.  Lattices for Distributed Source Coding: Jointly Gaussian Sources and Reconstruction of a Linear Function , 2007, IEEE Transactions on Information Theory.

[47]  Gregory W. Wornell,et al.  Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks , 2003, IEEE Trans. Inf. Theory.

[48]  Shlomo Shamai,et al.  Nested linear/Lattice codes for structured multiterminal binning , 2002, IEEE Trans. Inf. Theory.

[49]  Urs Niesen,et al.  The Degrees of Freedom of Compute-and-Forward , 2011, IEEE Transactions on Information Theory.

[50]  Abbas El Gamal,et al.  Capacity theorems for the relay channel , 1979, IEEE Trans. Inf. Theory.

[51]  Andrea J. Goldsmith,et al.  The Multiway Relay Channel , 2013, IEEE Transactions on Information Theory.

[52]  Sriram Vishwanath,et al.  Ergodic Interference Alignment , 2009, IEEE Transactions on Information Theory.

[53]  Shlomo Shamai,et al.  On the capacity of cognitive relay assisted Gaussian interference channel , 2008, 2008 IEEE International Symposium on Information Theory.

[54]  Te Sun Han,et al.  A new achievable rate region for the interference channel , 1981, IEEE Trans. Inf. Theory.

[55]  Rudi de Buda,et al.  Some optimal codes have structure , 1989, IEEE J. Sel. Areas Commun..

[56]  Elza Erkip,et al.  User cooperation diversity. Part I. System description , 2003, IEEE Trans. Commun..

[57]  T. Linder,et al.  Corrected proof of de Buda's theorem (lattice channel codes) , 1993 .

[58]  Michael Gastpar,et al.  Reliable Physical Layer Network Coding , 2011, Proceedings of the IEEE.

[59]  Giuseppe Caire,et al.  Coding and Decoding for the Dynamic Decode and Forward Relay Protocol , 2009, IEEE Transactions on Information Theory.

[60]  C. A. Rogers Lattice coverings of space , 1959 .

[61]  Lizhong Zheng,et al.  Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.

[62]  Elza Erkip,et al.  Achievable Rates for the Gaussian Interference Relay Channel , 2007, IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference.

[63]  Soung Chang Liew,et al.  Asynchronous Physical-Layer Network Coding , 2012, IEEE Transactions on Wireless Communications.

[64]  G. David Forney,et al.  On the role of MMSE estimation in approaching the information-theoretic limits of linear Gaussian channels: Shannon meets Wiener , 2004, ArXiv.

[65]  Randall Dougherty,et al.  Insufficiency of linear coding in network information flow , 2005, IEEE Transactions on Information Theory.

[66]  Uri Erez,et al.  The Approximate Sum Capacity of the Symmetric Gaussian $K$ -User Interference Channel , 2012, IEEE Transactions on Information Theory.

[67]  Sae-Young Chung,et al.  Capacity of the Gaussian Two-way Relay Channel to within 1/2 Bit , 2009, ArXiv.

[68]  Tamás Linder,et al.  Corrected proof of de Buda's theorem , 1993, IEEE Trans. Inf. Theory.

[69]  Sae-Young Chung,et al.  Interference Channel With a Causal Relay Under Strong and Very Strong Interference , 2014, IEEE Transactions on Information Theory.

[70]  Aylin Yener,et al.  The Gaussian Interference Relay Channel: Improved Achievable Rates and Sum Rate Upperbounds Using a Potent Relay , 2011, IEEE Transactions on Information Theory.

[71]  Lawrence Ong,et al.  Capacity Theorems for the AWGN multi-way relay channel , 2010, 2010 IEEE International Symposium on Information Theory.

[72]  E. Meulen,et al.  Three-terminal communication channels , 1971, Advances in Applied Probability.

[73]  Jinhong Yuan,et al.  Outage Performance for Compute-and-Forward in Generalized Multi-Way Relay Channels , 2012, IEEE Communications Letters.

[74]  Elza Erkip,et al.  A Secure Communication Game With a Relay Helping the Eavesdropper , 2009, IEEE Transactions on Information Forensics and Security.

[75]  Elza Erkip,et al.  Multiple-Antenna Cooperative Wireless Systems: A Diversity–Multiplexing Tradeoff Perspective , 2007, IEEE Transactions on Information Theory.

[76]  Simon Litsyn,et al.  Lattices which are good for (almost) everything , 2005, IEEE Transactions on Information Theory.

[77]  Toshiaki Koike-Akino,et al.  Optimized constellations for two-way wireless relaying with physical network coding , 2009, IEEE Journal on Selected Areas in Communications.

[78]  Frédérique E. Oggier,et al.  Secrecy gain: A wiretap lattice code design , 2010, 2010 International Symposium On Information Theory & Its Applications.

[79]  Daniela Tuninetti,et al.  Outer bounds for the interference channel with a cognitive relay , 2010, 2010 IEEE Information Theory Workshop.

[80]  Soung Chang Liew,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2022 .

[81]  Tracey Ho,et al.  A Random Linear Network Coding Approach to Multicast , 2006, IEEE Transactions on Information Theory.

[82]  Hesham El Gamal,et al.  The Relay–Eavesdropper Channel: Cooperation for Secrecy , 2006, IEEE Transactions on Information Theory.

[83]  Amir K. Khandani,et al.  Real Interference Alignment: Exploiting the Potential of Single Antenna Systems , 2009, IEEE Transactions on Information Theory.

[84]  A. Lee Swindlehurst,et al.  Cooperative Jamming for Secure Communications in MIMO Relay Networks , 2011, IEEE Transactions on Signal Processing.

[85]  Syed Ali Jafar,et al.  Interference Alignment and Degrees of Freedom of the $K$-User Interference Channel , 2008, IEEE Transactions on Information Theory.

[86]  Muriel Médard,et al.  An algebraic approach to network coding , 2003, TNET.