Molecular Mechanics Based Finite Element For Carbon Nanotube Modeling

In this paper a new method is introduced for carbon nanotubes modeling. It combines features of Molecular Mechanics and Finite Element Analysis. This method is based on the development of a new finite element, whose internal energy is determined by the semi-empirical Brenner molecular potential model; all quantities are calculated analytically in order to gain more accuracy. The method is validated through comparisons to results provided by other researchers and are obtained either by experimental procedures or theoretical predictions. The bending and shearing of CNTs is also simulated.© 2006 ASME

[1]  A. Sgamellotti,et al.  Theoretical investigations on the functionalization of carbon nanotubes , 2007 .

[2]  A. Chakraborty Shell element based model for wave propagation analysis in multi-wall carbon nanotubes , 2007 .

[3]  W. Kang,et al.  Carbon nanotubes field emission integrated triode amplifier array , 2006 .

[4]  Yanqiu Zhu,et al.  Mechanical and NH3 sensing properties of long multi-walled carbon nanotube ropes , 2006 .

[5]  Niranjan Govind,et al.  Nanotube-based gas sensors - role of structural defects , 2006 .

[6]  S. Jun,et al.  A Quasicontinuum Method for Deformations of Carbon Nanotubes , 2005 .

[7]  H. Rothert,et al.  Finite Element Analysis of Carbon Nanotubes with Stone-Wales Defects , 2005 .

[8]  J. Mintmire,et al.  Fundamental properties of single-wall carbon nanotubes. , 2005, The journal of physical chemistry. B.

[9]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[10]  R. Namburu,et al.  A Lattice Statics-Based Tangent-Stiffness Finite Element Method , 2004 .

[11]  Tsu-Wei Chou,et al.  Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces , 2003 .

[12]  F. Yuan,et al.  Simulation of elastic properties of single-walled carbon nanotubes , 2003 .

[13]  Peter W. Chung,et al.  On a formulation for a multiscale atomistic-continuum homogenization method , 2003 .

[14]  Chunyu Li,et al.  A STRUCTURAL MECHANICS APPROACH FOR THE ANALYSIS OF CARBON NANOTUBES , 2003 .

[15]  Yijun Liu,et al.  Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element , 2003 .

[16]  S. Frankland,et al.  Atomic Modeling of Carbon-Based Nanostructures as a Tool for Developing New Materials and Technologies , 2002 .

[17]  Dong Qian,et al.  Mechanics of carbon nanotubes , 2002 .

[18]  Ted Belytschko,et al.  An atomistic-based finite deformation membrane for single layer crystalline films , 2002 .

[19]  Ray H. Baughman,et al.  Actuators of individual carbon nanotubes , 2002 .

[20]  Philippe H. Geubelle,et al.  The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials , 2002 .

[21]  S. Shi,et al.  Molecular dynamic simulations on tensile mechanical properties of single-walled carbon nanotubes with and without hydrogen storage , 2002 .

[22]  E.L.Ivchenko,et al.  Chirality effects in carbon nanotubes , 2002, cond-mat/0202286.

[23]  A. A. Gusev,et al.  Evaluation of the elastic constants of nanoparticles from atomistic simulations , 2002 .

[24]  J. Valverde Molecular Modelling: Principles and Applications , 2001 .

[25]  R. Chen,et al.  Carbon Nanotube Chemical and Mechanical Sensors , 2001 .

[26]  P. Avouris,et al.  Nanotubes for electronics. , 2000, Scientific American.

[27]  D. Sánchez-Portal,et al.  AB INITIO STRUCTURAL, ELASTIC, AND VIBRATIONAL PROPERTIES OF CARBON NANOTUBES , 1998, cond-mat/9811363.

[28]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[29]  David R. Bowler,et al.  Tight-binding modelling of materials , 1997 .

[30]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[31]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[32]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[33]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[34]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[35]  J. Tersoff,et al.  Empirical interatomic potential for carbon, with application to amorphous carbon. , 1988, Physical review letters.

[36]  Janet E. Jones On the Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature , 1924 .

[37]  Janet E. Jones On the determination of molecular fields. —II. From the equation of state of a gas , 1924 .