SOME RECENT RESULTS IN RARE EVENT ESTIMATION

This article presents several state-of-the-art Monte Carlo methods for simulating and estimating rare events. A rare event occurs with a very small probability, but its occurrence is important enough to justify an accurate study. Rare event simulation calls for specific techniques to speed up standard Monte Carlo sampling, which requires unacceptably large sample sizes to observe the event a sucient number of times. Among these variance reduction methods, the most prominent ones are Importance Sampling (IS) and Multilevel Splitting, also known as Subset Simulation. This paper oers some recent results on both aspects, motivated by theoretical issues as well as by applied problems. Resume. Cet article propose un etat de l'art de plusieurs methodes Monte Carlo pour l'estimation d'evenements rares. Un evenement rare est par definition un evenement de probabilite tres faible, mais d'importance pratique cruciale, ce qui justifie une etude precise. La methode Monte Carlo classique s'averant prohibitivement couteuse, il importe d'appliquer des techniques specifiques pour leur estima- tion. Celles-ci se divisent en deux grandes categories : echantillonnage preferentiel d'un cote, methodes multi-niveaux de l'autre. Nous presentons ici quelques resultats recents dans ces domaines, motives par des considerations tant pratiques que theoriques.

[1]  P. Ney Dominating Points and the Asymptotics of Large Deviations for Random Walk on $\mathbb{R}^d$ , 1983 .

[2]  Peter W. Glynn,et al.  Stochastic Simulation: Algorithms and Analysis , 2007 .

[3]  P. Ney,et al.  Monte Carlo simulation and large deviations theory for uniformly recurrent Markov chains , 1990, Journal of Applied Probability.

[4]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[5]  Peter W. Glynn,et al.  Asymptotic robustness of estimators in rare-event simulation , 2007, TOMC.

[6]  Michel Broniatowski,et al.  Long runs under a conditional limit distribution. , 2012, 1202.0731.

[7]  Josselin Garnier,et al.  Analysis of adaptive directional stratification for the controlled estimation of rare event probabilities , 2012, Stat. Comput..

[8]  P. Glasserman,et al.  Counterexamples in importance sampling for large deviations probabilities , 1997 .

[9]  J. Sadowsky On Monte Carlo estimation of large deviations probabilities , 1996 .

[10]  P. Dupuis,et al.  Dynamic importance sampling for uniformly recurrent Markov chains , 2005, math/0503454.

[11]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[12]  P. Prescott,et al.  Monte Carlo Methods , 1964, Computational Statistical Physics.

[13]  Bruno Tuffin,et al.  Graph reductions to speed up importance sampling-based static reliability estimation , 2011, Proceedings of the 2011 Winter Simulation Conference (WSC).

[14]  Gerardo Rubino,et al.  Rare Event Simulation using Monte Carlo Methods , 2009 .

[15]  Michel Broniatowski,et al.  Small Variance Estimators for Rare Event Probabilities , 2013, TOMC.

[16]  N. Hengartner,et al.  Simulation and Estimation of Extreme Quantiles and Extreme Probabilities , 2011 .

[17]  Peter W. Glynn,et al.  Fluid heuristics, Lyapunov bounds and efficient importance sampling for a heavy-tailed G/G/1 queue , 2007, Queueing Syst. Theory Appl..

[18]  Miguel Munoz Zuniga Méthodes stochastiques pour l'estimation contrôlée de faibles probabilités sur des modèles physiques complexes : application au domaine nucléaire , 2011 .

[19]  Perwez Shahabuddin,et al.  Importance sampling for the simulation of highly reliable Markovian systems , 1994 .

[20]  Henrik O. Madsen,et al.  Structural Reliability Methods , 1996 .

[21]  Pierre L'Ecuyer,et al.  Importance Sampling in Rare Event Simulation , 2009, Rare Event Simulation using Monte Carlo Methods.

[22]  J. Beck,et al.  Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation , 2001 .

[23]  M. Schervish Theory of Statistics , 1995 .

[24]  Gerardo Rubino,et al.  Combination of conditional Monte Carlo and approximate zero-variance importance sampling for network reliability estimation , 2010, Proceedings of the 2010 Winter Simulation Conference.

[25]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[26]  P. Glynn,et al.  Efficient simulation of light-tailed sums: An old-folk song sung to a faster new tune , 2009 .

[27]  James A. Bucklew,et al.  Introduction to Rare Event Simulation , 2010 .

[28]  C. Robert,et al.  Properties of nested sampling , 2008, 0801.3887.

[29]  B. Tuffin,et al.  La simulation de Monte Carlo , 2010 .

[30]  Dirk P. Kroese,et al.  An Efficient Algorithm for Rare-event Probability Estimation, Combinatorial Optimization, and Counting , 2008 .

[31]  Pierre Del Moral,et al.  Sequential Monte Carlo for rare event estimation , 2012, Stat. Comput..

[32]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[33]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[34]  Arnaud Guyader,et al.  A multiple replica approach to simulate reactive trajectories. , 2010, The Journal of chemical physics.

[35]  R. Rubinstein The Gibbs Cloner for Combinatorial Optimization, Counting and Sampling , 2009 .

[36]  Jean Walrand,et al.  A quick simulation method for excessive backlogs in networks of queues , 1989 .

[37]  A. Kiureghian,et al.  STRUCTURAL RELIABILITY UNDER INCOMPLETE PROBABILITY INFORMATION , 1986 .

[38]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[39]  Pierre L'Ecuyer,et al.  Splitting Techniques , 2009, Rare Event Simulation using Monte Carlo Methods.

[40]  Marvin K. Nakayama,et al.  General conditions for bounded relative error in simulations of highly reliable Markovian systems , 1996, Advances in Applied Probability.

[41]  P. Dupuis,et al.  Importance Sampling, Large Deviations, and Differential Games , 2004 .

[42]  O. Barndorff-Nielsen Information and Exponential Families in Statistical Theory , 1980 .

[43]  Gerardo Rubino,et al.  Approximate Zero-Variance Importance Sampling for Static Network Reliability Estimation , 2011, IEEE Transactions on Reliability.

[44]  Bruno Tuffin,et al.  Approximating zero-variance importance sampling in a reliability setting , 2011, Ann. Oper. Res..

[45]  Paul Glasserman,et al.  Importance Sampling for Portfolio Credit Risk , 2005, Manag. Sci..