A Novel Low-Loss Diamond-Core Porous Fiber for Polarization Maintaining Terahertz Transmission

We report on the numerical design optimization of a new kind of relatively simple porous-core photonic crystal fiber (PCF) for terahertz (THz) waveguiding. A novel twist is introduced in the regular hexagonal PCF by including a diamond-shaped porous-core inside the hexagonal cladding. The numerical results obtained from an efficient finite-element method, which confirms a high birefringence of the order 10-2 and low effective material loss of 0.07 cm-1 at 0.7-THz operating frequency. The proposed PCF is anticipated to be useful in polarization sensitive THz appliances.

[1]  Raonaqul Islam,et al.  Extremely High-Birefringent Asymmetric Slotted-Core Photonic Crystal Fiber in THz Regime , 2015, IEEE Photonics Technology Letters.

[2]  Zhengbiao Ouyang,et al.  Porous-Core Photonic Crystal Fiber for Low Loss Terahertz Wave Guiding , 2013, IEEE Photonics Technology Letters.

[3]  Peter Uhd Jepsen,et al.  Bendable, low-loss Topas fibers for the terahertz frequency range. , 2009, Optics express.

[4]  Ole Bang,et al.  Low-Loss Hollow-Core Anti-Resonant Fibers With Semi-Circular Nested Tubes , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  Daru Chen,et al.  Squeezed lattice elliptical-hole terahertz fiber with high birefringence. , 2009, Applied optics.

[6]  B. M. A. Rahman,et al.  Design and Characterization of Low-Loss Porous-Core Photonic Crystal Fiber , 2012, IEEE Photonics Journal.

[7]  Maryanne C. J. Large,et al.  Fabrication of microstructured polymer optical fibres , 2004 .

[8]  Ole Bang,et al.  Localized biosensing with Topas microstructured polymer optical fiber. , 2007, Optics letters.

[9]  Derek Abbott,et al.  Low loss, low dispersion and highly birefringent terahertz porous fibers , 2008, 0807.4354.

[10]  Masashi Yamaguchi,et al.  Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap” , 2008 .

[11]  John E. Cunningham,et al.  Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro-optic detection , 2011 .

[12]  P. Roberts,et al.  Demonstration of ultra-flattened dispersion in photonic crystal fibers. , 2002, Optics express.

[13]  Jian Liang,et al.  High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance. , 2013, Applied optics.

[14]  Alireza Hassani,et al.  Porous polymer fibers for low-loss Terahertz guiding. , 2008, Optics express.

[15]  Changhe Zhou,et al.  Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation , 2013 .

[16]  Peter Uhd Jepsen,et al.  Porous-core honeycomb bandgap THz fiber. , 2011, Optics letters.

[17]  Ole Bang,et al.  Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes. , 2015, Optics express.

[18]  H Park,et al.  Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers. , 2008, Optics express.

[19]  D. Webb,et al.  Humidity insensitive TOPAS polymer fiber Bragg grating sensor. , 2011, Optics express.