Polar oxide surfaces

In the light of recent experimental as well as theoretical studies, we summarize our present understanding of polar oxide surfaces and examine fundamental issues regarding their stability. The focus is on the surface atomic configurations (relaxations, reconstructions, non-stoichiometry, etc) obtained under specific preparation conditions and their associated electronic structure. We discuss several mechanisms at work on polar surfaces, such as relaxation effects, change of covalency in the surface layers, partial filling of surface states, and stoichiometry variations, and try to assess their actual efficiency for cancelling the polarity.

[1]  G. Renaud Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering , 1998 .

[2]  T. Madey,et al.  Growth of ultrathin crystalline Al2O3 films on Ru(0001) and Re(0001) surfaces , 1996 .

[3]  F. Jollet,et al.  Influence of surface relaxation on the electronic states of the α-Al2O3 (0001) surface: a self-consistent tight-binding approach , 1996 .

[4]  S. Mankefors Scheme for calculating the electronic structure of polar surfaces , 1999 .

[5]  C. Noguera,et al.  Electronic structure of clean insulating oxide surfaces I. A numerical approach , 1994 .

[6]  V. Henrich Thermal faceting of (110) and (111) surfaces of MgO , 1976 .

[7]  A. Stierle,et al.  STRUCTURE AND DEFECTS OF EPITAXIAL CR2O3(0001) OVERLAYERS ON CR(110) , 1998 .

[8]  F. Finocchi,et al.  Polarity on the SrTiO3 (111) and (110) surfaces , 1999 .

[9]  C. Ventrice,et al.  Scanning tunneling microscopy on the growth of ordered NiO layers on Au(111) , 1994 .

[10]  K. Shiraishi A New Slab Model Approach for Electronic Structure Calculation of Polar Semiconductor Surface , 1990 .

[11]  Y. Kobayashi,et al.  Growth of ultra-thin titanium oxide on Cu(100), Fe/Cu(100) and ordered ultra-thin iron oxide studied by low-energy electron diffraction and X-ray photoelectron spectroscopy , 1999 .

[12]  M. Gillan,et al.  Structure of the (0001) surface of α-Al2O3 from first principles calculations , 1993 .

[13]  W. Weiss Structure and composition of thin epitaxial iron oxide films grown onto Pt(111) , 1997 .

[14]  M. Gautier,et al.  Modifications of α-Al2O3(0001) surfaces induced by thermal treatments or ion bombardment , 1991 .

[15]  Kersti Hermansson,et al.  A molecular dynamics study of MgO(111) slabs , 1997 .

[16]  C. Noguera,et al.  Electronic structure of clean insulating oxide surfaces II. Modifications of the iono-covalent bonding , 1994 .

[17]  Pashley Electron counting model and its application to island structures on molecular-beam epitaxy grown GaAs(001) and ZnSe(001). , 1989, Physical review. B, Condensed matter.

[18]  J. W. Halley,et al.  Ewald methods for polarizable surfaces with application to hydroxylation and hydrogen bonding on the (012) and (001) surfaces of α-Fe2O3 , 1997, cond-mat/9704070.

[19]  F. Cosandey,et al.  Electron microscopy studies of metal/MgO interfaces , 1992 .

[20]  H. Güntherodt,et al.  Progress towards spin‐polarized scanning tunneling microscopy , 1992 .

[21]  Yang,et al.  Adhesive energy and charge transfer for MgO/Cu heterophase interfaces. , 1996, Physical review. B, Condensed matter.

[22]  M. Hove,et al.  Magnetite Fe3O4(111): surface structure by LEED crystallography and energetics , 1994 .

[23]  Y. Kawazoe,et al.  Relaxations of TiO 2 - and SrO-terminated SrTiO 3 (001) surfaces , 1998 .

[24]  A. Barbier,et al.  Determination Of The α-Al 2 O 3 (0001) Surface Relaxation and Termination by Measurements of Crystal Truncation Rods , 1996 .

[25]  M. Takano,et al.  Depth selective Mössbauer spectroscopic study of Fe3O4 epitaxial films , 1990 .

[26]  D. Vanderbilt,et al.  Electric polarization as a bulk quantity and its relation to surface charge. , 1993, Physical review. B, Condensed matter.

[27]  E. A. Kraut,et al.  d-Band Surface States on Transition-Metal Perovskite Crystals: I. Qualitative Features and Application to SrTiO 3 , 1973 .

[28]  F. Jollet,et al.  α‐Al2O3 (0001) Surfaces: Atomic and Electronic Structure , 1994 .

[29]  M. Tsukada,et al.  Surface Electronic Structure of SrTiO 3 Studied by the DV-Xα Cluster Method , 1980 .

[30]  Y. Kim,et al.  Selective growth and characterization of pure, epitaxial α-Fe2O3(0001) and Fe3O4(001) films by plasma-assisted molecular beam epitaxy , 1997 .

[31]  Wolf,et al.  Reconstruction of NaCl surfaces from a dipolar solution to the Madelung problem. , 1992, Physical review letters.

[32]  C. Noguera Theoretical Investigation of Acid-Base Properties of Oxide Surfaces , 1996 .

[33]  H. Freund,et al.  Hydroxyl groups on oxide surfaces: NiO(100), NiO(111) and Cr2O3(111) , 1993 .

[34]  K. Kishi,et al.  XPS and XAES study for oxidation of V/Cu(100) and V,Na/Cu(100) surfaces , 1993 .

[35]  Linus Pauling,et al.  The Nature of the Chemical Bond and the Structure of Molecules and Crystals , 1941, Nature.

[36]  R. M. Lambert,et al.  Oxygen chemisorption, surface oxidation, and the oxidation of carbon monoxide on cobalt (0001) , 1979 .

[37]  Sautet,et al.  Structure and contrast in scanning tunneling microscopy of oxides: FeO monolayer on Pt(111). , 1996, Physical review. B, Condensed matter.

[38]  R. Leysen,et al.  Electronic and structural characteristics of ZnO (0001) surfaces , 1973 .

[39]  A. Barbier,et al.  Determination of the α-Ai2O3(0001) Surface Relaxation and Termination by Measurements of Crystal Truncation Rods , 1998 .

[40]  F. Finocchi,et al.  First principles simulations of titanium oxide clusters and surfaces , 1999 .

[41]  Fu-Rong Chen,et al.  High-resolution electron microscopy of Cu/MgO and Pd/MgO interfaces , 1994 .

[42]  C. Noguera,et al.  Characteristics of Pd deposition on the MgO(111) surface , 1999 .

[43]  J. Rabalais,et al.  Composition and structure of the Al2O3{0001}-(1 × 1) surface , 1997 .

[44]  H. Over,et al.  Defect structures on epitaxial Fe3O4 (111) films , 1999 .

[45]  M. Fujimoto,et al.  Structure Analysis of SrTiO3 (111) Polar Surfaces , 1998 .

[46]  W. Moritz,et al.  X-ray structure analysis of the Cr2O3(0001)-(1×1) surface: evidence for Cr interstitial , 1999 .

[47]  M. Gillan,et al.  Structure and Energetics of Alumina Surfaces Calculated from First Principles , 1994 .

[48]  Pandey,et al.  Ab initio theory of polar semiconductor surfaces. I. Methodology and the (22) reconstructions of GaAs(111). , 1987, Physical review. B, Condensed matter.

[49]  S. Horn,et al.  Influence of strain on the electronic properties of epitaxial V2O3 thin films , 1997 .

[50]  W. Spicer,et al.  Photoemission investigation of surface states on strontium titanate , 1976 .

[51]  Barbieri,et al.  Surface structure determination of an oxide film grown on a foreign substrate: Fe3O4 multilayer on Pt(111) identified by low energy electron diffraction. , 1993, Physical review letters.

[52]  M. Henriot,et al.  ATOMIC-OXYGEN-ASSISTED MBE GROWTH OF ALPHA -FE2O3ON ALPHA -AL2O3(0001) : METASTABLE FEO(111)-LIKE PHASE AT SUBNANOMETER THICKNESSES , 1999 .

[53]  P. W. Tasker,et al.  The stability of ionic crystal surfaces , 1979 .

[54]  M. Salmeron,et al.  The structure of monolayer films of FeO on Pt(111) , 1993 .

[55]  S. C. Parker,et al.  Atomistic simulation of oxide surfaces and their reactivity with water , 1999 .

[56]  W. Weiss,et al.  Metal oxide heteroepitaxy: Stranski-Krastanov growth for iron oxides on Pt(111) , 1999 .

[57]  S. I. Yi,et al.  Fe termination for α-Fe2O3(0001) as grown by oxygen-plasma-assisted molecular beam epitaxy , 1999 .

[58]  M. Bäumer,et al.  Hydroxy1 driven reconstruction of the polar NiO(111) surface , 1994 .

[59]  P. Bloemen,et al.  Magnetic interface anisotropy of MBE-grown ultra-thin (001) Fe3O4 layers , 1996 .

[60]  C. Duke Semiconductor Surface Reconstruction: The Structural Chemistry of Two-Dimensional Surface Compounds. , 1996, Chemical reviews.

[61]  R. Dovesi,et al.  Ab initio characterization of the (0001) and (101̄0) crystal faces of α-alumina , 1989 .

[62]  Hannemann,et al.  Stable reconstruction of the polar (111) surface of NiO on Au(111). , 1994, Physical review. B, Condensed matter.

[63]  F. Finocchi,et al.  A theoretical study of the stability and electronic structure of the polar 111 face of MgO , 1997 .

[64]  L. Hammer,et al.  Erratum to: “Strong relaxations a the Cr2O3(0001) surface as determined via low-energy electron diffraction and molecular dynamics simulations” [Surf. Sci. 372 (1997) L291] , 1997 .

[65]  S. Kawai,et al.  STM-imaging of a SrTiO3(100) surface with atomic-scale resolution , 1992 .

[66]  LaFemina,et al.  Atomic and electronic structure of the corundum ( alpha -alumina) (0001) surface. , 1994, Physical review. B, Condensed matter.

[67]  M. Hove,et al.  Theoretical study of the termination of the Fe3O4 (111) surface , 1999 .

[68]  Barbier,et al.  Atomic structure of the polar NiO(111)- p(2x2) surface , 2000, Physical review letters.

[69]  M. Bäumer,et al.  A synchrotron study of the deposition of vanadia on TiO2(110) , 1999 .

[70]  Lars-Gunnar Ekedahl,et al.  Comparison of the CO and D2 oxidation reactions on Pd supported on MgO(100), MgO(110) and MgO(111) , 1999 .

[71]  P. J. Møller,et al.  Epitaxial and electronic structures of ultra-thin copper films on MgO crystal surfaces , 1986 .

[72]  Zhaoming Zhang,et al.  Electronic interactions in the vanadium/TiO2(110) and vanadia/TiO2(110) model catalyst systems , 1992 .

[73]  J. Zegenhagen,et al.  Investigation of the SrTiO3 (110) surface by means of LEED, scanning tunneling microscopy and Auger spectroscopy , 1997 .

[74]  Renaud,et al.  Atomic structure of the alpha -Al2O3(0001)( sqrt 31 x sqrt 31 )R+/-9 degrees reconstruction. , 1994, Physical review letters.

[75]  Y. Kim,et al.  Synthesis of epitaxial films of Fe3O4 and α-Fe2O3 with various low-index orientations by oxygen-plasma-assisted molecular beam epitaxy , 1997 .

[76]  S. Chambers,et al.  Surface termination, composition and reconstruction of Fe3O4(001) and γ-Fe2O3(001) , 1999 .

[77]  G. Thornton,et al.  Fe3O4(111) termination of α-Fe2O3(0001) , 1994 .

[78]  Yang Gao,et al.  Heteroepitaxial growth of α-Fe2O3, γ-Fe2O3 and Fe3O4 thin films by oxygen-plasma-assisted molecular beam epitaxy , 1997 .

[79]  Ruifeng Liu,et al.  NiH2 has a singlet ground state , 1998 .

[80]  R. Courths,et al.  Electronic study of SrTiO3(001) surfaces by photoemission , 1985 .

[81]  G. Dresselhaus,et al.  Surface defects and the electronic structure of SrTi O 3 surfaces , 1978 .

[82]  L. Marks,et al.  CYCLIC OZONE IDENTIFIED IN MAGNESIUM OXIDE (111) SURFACE RECONSTRUCTIONS , 1998 .

[83]  J. Harbison,et al.  Molecular‐beam epitaxy growth mechanisms on GaAs(100) surfaces , 1987 .

[84]  S. Shaikhutdinov,et al.  Oxygen pressure dependence of the α-Fe2O3(0001) surface structure , 1999 .

[85]  J. Birch,et al.  Time-resolved measurements of the formation of single-domain epitaxial Ni films on MgO(111) substrates using in-situ RHEED analysis , 1999 .

[86]  D. Bonnell,et al.  The geometric and electronic structure of the ZnO(0001) surface , 1991 .

[87]  C. Henry,et al.  Characterization of epitaxial (111) MgO thin films , 1990 .

[88]  H. Freund,et al.  Electronic states of the Cr2O3(0001) surface from ab initio embedded cluster calculations , 1999 .

[89]  W. Ranke,et al.  Crystal structures and growth mechanism for ultrathin films of ionic compound materials: FeO(111) on Pt(111) , 1999 .

[90]  W. Ranke,et al.  Photoemission of ethylbenzene adsorbed on Pt(111) and on epitaxial films of FeO(111) and Fe3O4(111): electronic structure and isosteric heats of adsorption , 1998 .

[91]  Shih-Chia Chang,et al.  The crystallography of the polar (0001) Zn and (0001̄)O surfaces of zinc oxide , 1974 .

[92]  M. Casarin,et al.  An angle-scanned photoelectron diffraction study on the surface relaxation of ZnO (0001) , 1994 .

[93]  Seidman,et al.  Atomic scale studies of segregation at ceramic/metal heterophase interfaces. , 1995, Physical review letters.

[94]  S. C. Parker,et al.  Computer simulation of the crystal morphology of NiO , 1993 .

[95]  H. Freund,et al.  Unusual state of adsorbed CO : CO(√3×√3)R30°/Cr2O3(111) , 1991 .

[96]  Vaughan,et al.  Structures of Fe3O4 (111) surfaces observed by scanning tunneling microscopy. , 1996, Physical review. B, Condensed matter.

[97]  D. Goodman,et al.  Ordered binary oxide films of V2O3(0001) on Al2O3 , 1999 .

[98]  Stephen C. Parker,et al.  Atomistic simulation of dislocations, surfaces and interfaces in MgO , 1996 .

[99]  D. Bonnell,et al.  Structures and chemistry of the annealed SrTiO3(001) surface , 1994 .

[100]  P. Thiel,et al.  Structural determination of a NiO(111) film on Ni(100) by dynamical low‐energy electron‐diffraction analysis , 1994 .

[101]  Koike,et al.  Evidence for Ferromagnetic Order at the FeO(111) Surface. , 1996, Physical review letters.

[102]  W. R. Bottoms,et al.  Correlation of electronic, leed, and auger diagnostics on ZnO surfaces , 1972 .

[103]  Harrison,et al.  Structure of the alpha -Cr2O3 (0001) surface: An ab initio total-energy study. , 1996, Physical review. B, Condensed matter.

[104]  C. Hagendorf,et al.  An STM, XPS and LEED investigation of the BaTiO3(111) surface , 1998 .

[105]  G. Somorjai,et al.  Growth, structure and chemical properties of FeO overlayers on Pt(100) and Pt(111) , 1992 .

[106]  W. Ranke,et al.  Growth and structure of ultrathin FeO films on Pt(111) studied by STM and LEED , 1998 .

[107]  W. Kress,et al.  Surface relaxation, surface reconstruction and surface dynamics close to the antiferrodistortive phase transition of SrTiO3(001) slabs with free SrO and TiO2 surfaces , 1993 .

[108]  Lin H. Yang,et al.  Atomic and electronic structure and interatomic potentials at a polar ceramic/metal interface: à222âMgO/Cu , 1999 .

[109]  R. Courths,et al.  Bulk and surface Ti3d valence and defect states in SrTiO3(001) from resonant photoemission , 1989 .

[110]  V. Henrich,et al.  Structure of α-Fe2O3 single crystal surfaces following Ar+ ion bombardment and annealing in O2 , 1988 .

[111]  H. Freund,et al.  Adsorption of CO and NO on NiO and CoO: a comparison , 1996 .

[112]  R. M. Wolf,et al.  Investigation of the stoichiometry of MBE-grown Fe3O4 layers by magneto-optical Kerr spectroscopy , 1997 .

[113]  Preben J. Møller,et al.  A total current spectroscopy study of metal oxide surfaces : I. Unoccupied electronic states of ZnO and MgO , 1999 .

[114]  C. Noguera,et al.  Relaxation and rumpling mechanisms on oxide surfaces , 1995 .

[115]  M. Kuhn,et al.  Growth, structure and thermal properties of chromium oxide films on Pt(111) , 1997 .

[116]  M. Tsukada,et al.  Theory of Electronic Structure of the Polar ZnO Surface by the Cluster Models , 1981 .

[117]  J. E. Mattson,et al.  Epitaxial growth of body‐centered‐cubic transition metal films and superlattices onto MgO (111), (011), and (001) substrates , 1995 .

[118]  S. I. Yi,et al.  Effect of growth rate on the nucleation of α-Fe2O3 on α-Al2O3(0001) by oxygen-plasma-assisted molecular beam epitaxy , 1999 .

[119]  Shyi-Long Lee,et al.  Vanadium oxides thin films grown on rutile TiO2(110)-(1×1) and (1×2) surfaces , 1999 .

[120]  Lin H. Yang,et al.  Atomic Scale Observations of Metal-Induced Gap States at \{222\} MgO/Cu Interfaces , 1998 .

[121]  S. Horn,et al.  Angular-resolved photoemission on V2O3 and VO2 , 1997 .

[122]  M. Gajdardziska-Josifovska,et al.  Morphology of MgO(111) surfaces: artifacts associated with the faceting of polar oxide surfaces into neutral surfaces , 1998 .

[123]  Heinz,et al.  Ferroelectric relaxation of the SrTiO3(100) surface. , 1989, Physical review letters.

[124]  C. Mocuta Growth and magnetism of Co/NiO(111) thin films , 1998 .

[125]  Hans-Joachim Freund,et al.  Strong relaxations at the Cr2O3(0001) surface as determined via low-energy electron diffraction and molecular dynamics simulations , 1997 .

[126]  M. Tanemura,et al.  OXYGEN ADSORPTION AND OXIDE FORMATION ON NI3AL(111) , 1998 .

[127]  R. Davey,et al.  The morphology of α-Al2O3 and α-Fe2O3: The importance of surface relaxation , 1987 .

[128]  W. Ranke,et al.  Adsorption of water on Fe3O4(111) studied by photoelectron and thermal desorption spectroscopy , 1999 .

[129]  D. Goodman,et al.  Epitaxial growth of ultrathin Al2O3 films on Ta(110) , 1994 .

[130]  ller,et al.  Impurity‐induced 900 °C (2×2) surface reconstruction of SrTiO3(100) , 1990 .

[131]  Yasunori Tanaka,et al.  Structural study of SrTiO3(100) surfaces by low energy ion scattering , 1994 .

[132]  E. Longo,et al.  ZnO clusters models: An AM1 and MNDO study , 1993 .

[133]  D. Goodman,et al.  Preparation and characterization of ultra-thin iron oxide films on a Mo(100) surface , 1995 .

[134]  J. Coey,et al.  Wigner glass on the magnetite (001) surface observed by scanning tunneling microscopy with a ferromagnetic tip , 1994 .

[135]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[136]  G. Somorjai,et al.  The preparation and reactivity of thin, ordered films of vanadium oxide on Au(111) , 1990 .

[137]  A. Kahn ATOMIC STRUCTURE OF (100) SURFACES OF ZINCBLENDE COMPOUND SEMICONDUCTORS , 1996 .

[138]  G. Thornton,et al.  Imaging the polar and non-polar surfaces of ZnO with STM , 1998 .

[139]  Y. Aiura,et al.  Structure and electronic states on reduced SrTiO3(110) surface observed by scanning tunneling microscopy and spectroscopy , 1995 .

[140]  The hematite (Alpha-Fe_2O_3)(0001) surface: Evidence for domains of distinct chemistry , 1998, cond-mat/9807202.

[141]  W. Weiss,et al.  Fe3O4(111) surface structure determined by LEED crystallography , 1999 .

[142]  D. Bonnell,et al.  Effect of annealing on the stoichiometry of SrTiO3(001) , 1994 .

[143]  W. Göpel,et al.  Angle-resolved photoemission from polar and nonpolar zinc oxide surfaces , 1982 .

[144]  Hans-Joachim Freund,et al.  Structure and defects of an ordered alumina film on NiAl(110) , 1994 .

[145]  M. Takano,et al.  CEMS study of the growth and properties of Fe3O4 films , 1990 .

[146]  C. Peden,et al.  Ion scattering study of the Zn and oxygen-terminated basal plane surfaces of ZnO , 1998 .

[147]  M. Alfredsson,et al.  A combined molecular dynamics-ab initio study of H 2 adsorption on ideal, relaxed, and temperature-reconstructed MgO(111) surfaces , 1998 .

[148]  M. Wuttig,et al.  Formation of a well-ordered aluminium oxide overlayer by oxidation of NiAl(110) , 1991 .

[149]  C. Duke,et al.  Calculations of low-energy electron diffraction intensities from the polar faces of ZnO , 1975 .

[150]  H. Freund,et al.  Polar surfaces of oxides: reactivity and reconstruction , 1995 .

[151]  T. Kawai,et al.  A scanning tunneling microscopy study of laser molecular beam epitaxy on SrTiO3(100) surface , 1994 .

[152]  S. I. Yi,et al.  Surface structure of MBE-grown α-Fe 2 O 3 (0001) by intermediate-energy X-ray photoelectron diffraction , 1999 .

[153]  W. Mackrodt Atomistic simulation of oxide surfaces , 1988 .

[154]  F. Finocchi,et al.  A theoretical study of the unreconstructed polar (111) face of SrTiO3 , 1999 .

[155]  G. Thornton,et al.  Scanning tunnelling microscopy studies of α-Fe2O3(0001) , 1998 .

[156]  M. Bäumer,et al.  A synchrotron study of the growth of vanadium oxide on Al2O3(0001) , 1999 .

[157]  D. Goodman,et al.  Particulate Cu on Ordered Al2O3: Reactions with Nitric Oxide and Carbon Monoxide , 1994 .

[158]  Hiroyuki Tanaka,et al.  Surface Structure and Electronic Property of Reduced SrTiO3(100) Surface Observed by Scanning Tunneling Microscopy/Spectroscopy , 1993 .

[159]  J. Sanz,et al.  Cr2O3 (0001) oxygen-terminating surface. A molecular dynamics study , 1999 .

[160]  M. Salmeron,et al.  Growth of FeOx on Pt(111) studied by scanning tunneling microscopy , 1994 .

[161]  H. Freund,et al.  Adsorption and reaction on oxide surfaces: NO, NO2 on Cr2O3(111)/Cr(110) , 1991 .

[162]  Electronic structure of the (001) surface of reduced SrTiO3 , 1997 .

[163]  Parker,et al.  Molecular-dynamics simulations of nickel oxide surfaces. , 1995, Physical review. B, Condensed matter.

[164]  Satoshi Watanabe,et al.  First-principles study on energetics of c-BN(001) reconstructed surfaces. , 1995, Physical review. B, Condensed matter.

[165]  Evidence for Selective Imaging of Different Magnetic Ions on the Atomic Scale by Using a Scanning Tunnelling Microscope with a Ferromagnetic Probe Tip , 1992 .

[166]  H. Nylén,et al.  Electronic structure of ZnO(0001) studied by angle-resolved photoelectron spectroscopy , 1997 .

[167]  S. Kawai,et al.  Interaction of oxygen vacancies with O2 on a reduced SrTiO3(100)√5 × √5-R26.6° surface observed by STM , 1994 .

[168]  A. Barbier,et al.  Structural investigation of the NiO(111) single crystal surface , 1997 .

[169]  W. Mackrodt Classical and quantum simulation of the surface properties of α-Al2O 3 , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[170]  T. Kawai,et al.  Surface structure of reduced SrTiO3(111) observed by scanning tunneling microscopy , 1996 .

[171]  G. Sawatzky,et al.  In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy , 1999 .

[172]  M. A. James,et al.  NO2-assisted molecular-beam epitaxy of Fe3O4, Fe3-delta O4, and gamma-Fe2O3 thin films on MgO(100) , 1999 .

[173]  T. Madey,et al.  Growth and oxidation of ultra-thin Al films on the Re (0001) surface , 1996 .

[174]  T. Hanada,et al.  Structure and electronic state of the TiO2 and SrO terminated SrTiO3(100) surfaces , 1993 .

[175]  P. Lin,et al.  Monolayer reconstruction on polar surfaces of ruby , 1989 .

[176]  J. C. Phillips Ionicity of the Chemical Bond in Crystals , 1970 .

[177]  J. Gale,et al.  Atomic and electronic structure of the corundum (0001) surface: comparison with surface spectroscopies , 1997 .

[178]  M. Hove,et al.  INTERLAYER INTERACTIONS IN EPITAXIAL OXIDE GROWTH: FEO ON PT(111) , 1997 .

[179]  Water chemisorption and reconstruction of the MgO surface. , 1995, Physical review. B, Condensed matter.

[180]  M. Kuhn,et al.  Novel electronic and magnetic properties of ultrathin chromium oxide films grown on Pt(111) , 1998 .

[181]  G. Sawatzky,et al.  In situ RHEED and XPS studies of epitaxial thin α-Fe2O3(0001) films on sapphire , 1996 .

[182]  W. Harrison Theory of polar semiconductor surfaces , 1979 .

[183]  Weiss,et al.  Electronic structure of ultrathin ordered iron oxide films grown onto Pt(111). , 1995, Physical review. B, Condensed matter.

[184]  T. Hanada,et al.  Surface structure of SrTiO3(001) with various surface treatments , 1993 .

[185]  Y. Cai,et al.  Valence-band structure of epitaxially grownFe3O4(111)films , 1998 .

[186]  A. Stierle,et al.  Oxidation induced roughening during Cr2O3(0001) growth on Cr(110) , 1997 .

[187]  R. M. Wolf,et al.  An STM study of Fe3O4 (100) grown by Molecular Beam Epitaxy , 1997 .

[188]  M. Bäumer,et al.  Structural rearrangement and surface magnetism on oxide surfaces: a temperature-dependent low-energy electron diffraction-electron energy loss spectroscopy study of Cr2O3(111)/Cr(110) , 1995 .

[189]  G. Somorjai,et al.  Composition and surface structure of the (0001) face of .alpha.-alumina by low-energy electron diffraction , 1970 .

[190]  D. Bonnell,et al.  Effect of Variations in Stoichiometry on the Surface Structure of SrTiO3 (001) , 1995 .

[191]  A. Atrei,et al.  Structure of the ZnO(0001) surface studied by X-ray photoelectron diffraction , 1994 .

[192]  L. Fiermans,et al.  A combined LEED, AES and XPS study of the ZnO {0001} polar surfaces: I. LEED, AES and XPS of contaminated surfaces , 1973 .

[193]  Hiroshi Onishi,et al.  Adsorption of Na atoms and oxygen-containing molecules on MgO(100) and (111) surfaces , 1987 .

[194]  H. J. Zeiger,et al.  Explanation of the 6-fold LEED patterns from polar (0001) and (0001) ZnO surfaces☆☆☆ , 1978 .

[195]  H. Haus,et al.  QND-measurement of twin beams by phase sensitive preamplification , 1996, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[196]  T. Morimoto,et al.  Calculation of the electronic structure of the polar ZnO(0001) surface by the DV-Xα cluster method , 1988 .

[197]  H. E. Farnsworth,et al.  Investigations of surface stability of II–VI wurtzite compounds by LEED , 1970 .

[198]  Ellis,et al.  Electronic structure and energetics of sapphire (0001) and (11-bar02) surfaces. , 1992, Physical review. B, Condensed matter.

[199]  G. Somorjai,et al.  UPS and XPS studies of the chemisorption of O2, H2 AND H2O on reduced and stoichiometric SrTiO3(111) surfaces; The effects of illumination , 1980 .

[200]  S. I. Yi,et al.  Morphological and structural investigation of the early stages of epitaxial growth of α-Fe2O3 (0001) on α-Al2O3 (0001) by oxygen-plasma-assisted MBE , 1999 .

[201]  H. Over,et al.  Structure of epitaxial iron oxide films grown on Pt(100) determined by low energy electron diffraction , 1997 .

[202]  H. Freund,et al.  High Resolution XPS Study of a Thin CoO(111) Film Grown on Co(0001) , 1996 .

[203]  H. Freund,et al.  NO on CoO(111)Co(0001): hydroxyl assisted adsorption , 1995 .

[204]  K. Jacobi,et al.  Work function, electron affinity and band bending of zinc oxide surfaces , 1984 .

[205]  C. Noguera,et al.  The concept of weak polarity: an application to the SrTiO3(001) surface , 1996 .

[206]  M. P. Sears,et al.  Sapphire (0001) Surface, Clean and with d -Metal Overlayers , 1999 .

[207]  M. P. Sears,et al.  AB INITIO STRUCTURAL PREDICTIONS FOR ULTRATHIN ALUMINUM OXIDE FILMS ON METALLIC SUBSTRATES , 1999 .

[208]  T. Bredow Embedded cluster study of water adsorption at Cr2O3(0001) , 1998 .

[209]  P. Ross,et al.  Surface oxidation of a Pt–20% CO alloy: An x‐ray photoelectron spectroscopy and low‐energy electron diffraction study on the [100] and [111] oriented single‐crystal surfaces , 1988 .

[210]  N. Achasov,et al.  Signature of the triangle singularity in the reaction [ital e][sup +][ital e][sup [minus]][r arrow][pi][sup +][pi][sup [minus]][pi][sup 0] , 1994 .

[211]  Masaru Tsukada,et al.  On the Electronic Structure of the Polar Surface of Compound Crystals , 1982 .

[212]  J. D. Levine,et al.  Polar surfaces of wurtzite and zincblende lattices , 1970 .