An innovative modal approach for frequency domain stress recovery and fatigue damage evaluation

Abstract The aim of the present paper is to show and validate an innovative method, developed by authors to evaluate, in frequency domain, the fatigue damage of mechanical components modeled by modal approach and subjected to random dynamic loads. The authors, in particular, have theoretically demonstrated that the exact statistical properties (spectral moments) of the PSD functions matrix of stress tensor of the model are obtainable only from PSD functions matrix of its modal coordinates and from PSD functions matrix of inputs. To show the capabilities of this new approach and to verify the obtainable speeding up of the evaluation process two test cases are analyzed and discussed.

[1]  N. W. M. Bishop,et al.  A THEORETICAL SOLUTION FOR THE ESTIMATION OF “RAINFLOW” RANGES FROM POWER SPECTRAL DENSITY DATA , 1990 .

[2]  Shinsuke Sakai,et al.  On the Distribution of Rainflow Range for Gaussian Random Processes with Bimodal PSD , 1995 .

[3]  Claudio Braccesi,et al.  Evaluation of mechanical component fatigue behavior under random loads: Indirect frequency domain method , 2014 .

[4]  Accurate Prediction of Fatigue Life under Random Loading , 2012 .

[5]  Claudio Braccesi,et al.  An equivalent uniaxial stress process for fatigue life estimation of mechanical components under multiaxial stress conditions , 2008 .

[6]  Mohd. Zaki Nuawi,et al.  Data scattering of fatigue damaging segmentation in order to develop the fatigue damaging and Morlet wavelet coefficient relationship , 2011 .

[7]  André Preumont,et al.  Spectral methods for multiaxial random fatigue analysis of metallic structures , 2000 .

[8]  André Preumont,et al.  Spectral methods to estimate local multiaxial fatigue failure for structures undergoing random vibrations , 2001 .

[9]  Roberto Tovo,et al.  A stress invariant based spectral method to estimate fatigue life under multiaxial random loading , 2011 .

[10]  Claudio Braccesi,et al.  A Frequency Method for Fatigue Life Estimation of Mechanical Components under Bimodal Random Stress Process , 2005 .

[11]  T Lagoda Influence of correlations between stresses on calculated fatigue life of machine elements , 1996 .

[12]  R. H. Myers,et al.  Probability and Statistics for Engineers and Scientists , 1978 .

[13]  Claudio Braccesi,et al.  The frequency domain approach in virtual fatigue estimation of non-linear systems: The problem of non-Gaussian states of stress , 2009 .

[14]  Claudio Braccesi,et al.  Random Loads Fatigue and Dynamic Simulation: a New Procedure to Evaluate the Behaviour of Non-Linear Systems , 2011 .

[15]  Janko Slavič,et al.  Frequency-domain methods for a vibration-fatigue-life estimation – Application to real data , 2013 .

[16]  André Preumont,et al.  Predicting random high-cycle fatigue life with finite elements , 1994 .

[17]  Claudio Braccesi,et al.  Fatigue behaviour analysis of mechanical components subject to random bimodal stress process: frequency domain approach , 2005 .

[18]  Adam Niesłony,et al.  Comparison of some selected multiaxial fatigue failure criteria dedicated for spectral method , 2010 .

[19]  Paul H. Wirsching,et al.  Fatigue under Wide Band Random Stresses , 1980 .

[20]  Denis Benasciutti,et al.  “Projection-by-Projection” Approach: A Spectral Method for Multiaxial Random Fatigue , 2014 .

[21]  Bernardo Zuccarello,et al.  Fatigue life prediction under wide band random loading , 2004 .

[22]  Curtis E. Larsen,et al.  A review of spectral methods for variable amplitude fatigue prediction and new results , 2015 .

[23]  Shahram Sarkani,et al.  Stochastic fatigue damage accumulation under broadband loadings , 1995 .

[24]  Adam Niesłony,et al.  Fatigue life prediction for broad-band multiaxial loading with various PSD curve shapes , 2012 .

[25]  Claudio Braccesi,et al.  Random fatigue. A new frequency domain criterion for the damage evaluation of mechanical components , 2015 .

[26]  Claudio Braccesi,et al.  Development of selection methodologies and procedures of the modal set for the generation of flexible body models for multi-body simulation , 2004 .

[27]  M. Di Paola,et al.  On the Characterization of Dynamic Properties of Random Processes by Spectral Parameters , 2000 .

[28]  André Preumont,et al.  Random Vibration and Spectral Analysis , 2010 .

[29]  M. Bampton,et al.  Coupling of substructures for dynamic analyses. , 1968 .

[30]  Roberto Tovo,et al.  Analogies between spectral methods and multiaxial criteria in fatigue damage evaluation , 2013 .

[31]  Claudio Braccesi,et al.  Validation of a New Method for Frequency Domain Dynamic Simulation and Damage Evaluation of Mechanical Components Modelled with Modal Approach , 2015 .

[33]  Luca Landi,et al.  Random Loads Fatigue: The Use of Spectral Methods Within Multibody Simulation , 2005 .

[34]  Curtis E. Larsen,et al.  Improved Spectral Method for Variable Amplitude Fatigue Prediction , 1990 .

[35]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1971 .

[36]  J. Collins Failure of materials in mechanical design : analysis, prediction, prevention , 1981 .

[37]  Turan Dirlik,et al.  Application of computers in fatigue analysis , 1985 .

[38]  F. Cianetti Development of a Modal Approach for the Fatigue Damage Evaluation of Mechanical Components Subjected to Random Loads , 2012 .