Thermoelectricity and Thermodiffusion in Magnetic Nanofluids: Entropic Analysis

An analytical model describing the thermoelectric potential production in magnetic nanofluids (dispersions of magnetic and charged colloidal particles in liquid media) is presented. The two major entropy sources, the thermogalvanic and thermodiffusion processes are considered. The thermodiffusion term is described in terms of three physical parameters; the diffusion coefficient, the Eastman entropy of transfer and the electrophoretic charge number of colloidal particles, which all depend on the particle concentration and the applied magnetic field strength and direction. The results are combined with well-known formulation of thermoelectric potential in thermogalvanic cells and compared to the recent observation of Seebeck coefficient enhancement/diminution in magnetic nanofluids in polar media.

[1]  Bourdon,et al.  Forced Rayleigh experiment in a magnetic fluid. , 1995, Physical review letters.

[2]  R. Perzynski,et al.  Relaxation of the field-induced structural anisotropy in a rotating magnetic fluid , 2009 .

[3]  R. Marti,et al.  Thermoelectric Generators Based on Ionic Liquids , 2018, Journal of Electronic Materials.

[4]  Carter S. Haines,et al.  High Power Density Electrochemical Thermocells for Inexpensively Harvesting Low‐Grade Thermal Energy , 2017, Advanced materials.

[5]  A. Würger Temperature dependence of the soret motion in colloids. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[6]  A. Würger Transport in charged colloids driven by thermoelectricity. , 2008, Physical review letters.

[7]  C. Mou,et al.  Single-ion heat of transport in electrolyte solutions: a hydrodynamic theory , 1989 .

[8]  T. Kang,et al.  High thermopower of ferri/ferrocyanide redox couple in organic-water solutions , 2017 .

[9]  G. J. Snyder,et al.  Thermoelectric efficiency and compatibility. , 2003, Physical review letters.

[10]  T. Ikeda Transported Entropies and Conventional Eastman Entropies of the Transfer of Some Univalent Ions in Aqueous Solutions at 25°C , 1964 .

[11]  A. J. deBethune,et al.  The Temperature Coefficients of Electrode Potentials The Isothermal and Thermal Coefficients—The Standard Ionic Entropy of Electrochemical Transport of the Hydrogen Ion , 1959 .

[12]  Y. V. Kuzminskii,et al.  Thermoelectric effects in electrochemical systems. Nonconventional thermogalvanic cells , 1994 .

[13]  R. Perzynski,et al.  Thermoelectricity and thermodiffusion in charged colloids. , 2015, The Journal of chemical physics.

[14]  A. Würger Hydrodynamic Boundary Effects on Thermophoresis of Confined Colloids. , 2016, Physical review letters.

[16]  Madeleine F Dupont,et al.  Thermo-electrochemical cells for waste heat harvesting - progress and perspectives. , 2017, Chemical communications.

[17]  J. N. Agar,et al.  Thermal diffusion in solutions of electrolytes , 1960, Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences.

[18]  Madeleine F Dupont,et al.  The electrochemistry and performance of cobalt-based redox couples for thermoelectrochemical cells , 2018 .

[19]  Anthony P. Straub,et al.  Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity , 2018 .

[20]  Jun Zhou,et al.  Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat. , 2016, Angewandte Chemie.

[21]  F. Bresme,et al.  Thermal Polarization of Water Influences the Thermoelectric Response of Aqueous Solutions. , 2018, The journal of physical chemistry. B.

[22]  E. D. Eastman THEORY OF THE SORET EFFECT , 1928 .

[23]  J. Turner,et al.  The Soret effect in some 0·01 normal aqueous electrolytes , 1960 .

[24]  R. Perzynski,et al.  What tunes the structural anisotropy of magnetic fluids under a magnetic field? , 2006, The journal of physical chemistry. B.

[25]  T. I. Quickenden,et al.  A Review of Power Generation in Aqueous Thermogalvanic Cells , 1995 .

[26]  Christophe Goupil,et al.  Thermodynamics of Thermoelectric Phenomena and Applications , 2011, Entropy.

[27]  K. E. Starling,et al.  Equation of State for Nonattracting Rigid Spheres , 1969 .

[28]  S. R. de Groot,et al.  Théorie Phénoménologique De L'effet Soret , 1942 .

[29]  R. Perzynski,et al.  Thermodiffusion of repulsive charged nanoparticles - the interplay between single-particle and thermoelectric contributions. , 2018, Physical chemistry chemical physics : PCCP.

[30]  W. Nernst,et al.  Die elektromotorische Wirksamkeit der Jonen , 1889 .

[31]  A. S. Booeshaghi,et al.  Thermo-electrochemical generator: energy harvesting & thermoregulation for liquid cooling applications , 2017 .

[32]  R. Perzynski,et al.  Ionic magnetic fluids in polar solvents with tuned counter-ions , 2017 .

[33]  M. Maskos,et al.  Hofmeister effect in thermal field-flow fractionation of colloidal aqueous dispersions , 2012 .

[34]  A. Würger,et al.  Charging of heated colloidal particles using the electrolyte Seebeck effect. , 2012, Physical review letters.

[35]  Yapei Wang,et al.  P-N Conversion in a Water-Ionic Liquid Binary System for Nonredox Thermocapacitive Converters. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[36]  J. Bacri,et al.  Anisotropy of the structure factor of magnetic fluids under a field probed by small-angle neutron scattering. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  D. Rochefort,et al.  Enhancing thermoelectrochemical properties by tethering ferrocene to the anion or cation of ionic liquids: altered thermodynamics and solubility. , 2017, Physical chemistry chemical physics : PCCP.

[38]  A. Würger,et al.  Collective thermoelectrophoresis of charged colloids. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Alois Würger,et al.  Thermal non-equilibrium transport in colloids , 2010 .

[40]  M. Maskos,et al.  Specific salt effects on thermophoresis of charged colloids. , 2014, Soft matter.

[41]  R. Piazza,et al.  Thermophoresis and thermoelectricity in surfactant solutions. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[42]  E. Anari,et al.  Substituted ferrocenes and iodine as synergistic thermoelectrochemical heat harvesting redox couples in ionic liquids. , 2016, Chemical communications.

[43]  Taewoo Kim,et al.  High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes , 2016, Nature Communications.

[44]  Hongyao Zhou,et al.  Supramolecular Thermo-Electrochemical Cells: Enhanced Thermoelectric Performance by Host-Guest Complexation and Salt-Induced Crystallization. , 2016, Journal of the American Chemical Society.

[45]  A. Wurger Is Soret equilibrium a non-equilibrium effect? , 2014, 1401.7546.

[46]  R. Perzynski,et al.  Understanding the structure and the dynamics of magnetic fluids: coupling of experiment and simulation , 2006 .

[47]  W. Breck,et al.  Thermal diffusion in non-isothermal cells. Part 1.—Theoretical relations and experiments on solutions of thallous salts , 1957 .

[48]  Jimmy Wu,et al.  Thermoelectrochemistry using conventional and novel gelled electrolytes in heat-to-current thermocells , 2017 .

[49]  M. Wolff Thermophoresis of polymers in electrolyte solutions , 2016 .

[50]  Bourdon,et al.  Transient grating in a ferrofluid under magnetic field: Effect of magnetic interactions on the diffusion coefficient of translation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[51]  T. Ikeshoji,et al.  Computer analysis of natural convection in thin-layer thermocells with a soluble redox couple , 1991 .

[52]  P. Turq,et al.  Brownian dynamics investigation of magnetization and birefringence relaxations in ferrofluids. , 2005, The Journal of chemical physics.

[53]  D. Frenkel,et al.  A unified description of colloidal thermophoresis , 2017, The European physical journal. E, Soft matter.

[54]  D. Artyukhov,et al.  Development of new electrode materials for thermo-electrochemical cells for waste heat harvesting , 2019, Renewable Energy Focus.

[55]  R. Perzynski,et al.  Can charged colloidal particles increase the thermoelectric energy conversion efficiency? , 2017, Physical chemistry chemical physics : PCCP.