Convex Polytopes: Extremal Constructions and f -Vector Shapes

The study of f -vectors has had huge successes in the last forty years. The most fundamental one is undoubtedly the “g-theorem,” conjectured by McMullen in 1971 and proved by Billera & Lee and Stanley in 1980, which characterizes the f vectors of simplicial and of simple polytopes combinatorially. See also Section 5.2 of Forman’s article in this volume, where h-vectors are discu ssed in connection with the Charney–Davis conjecture. Nevertheless, on some fundamental problems embarassingly little progress was made; one notable such problem concerns the shapes of f -vectors of 4-polytopes. A number of striking and fascinating polytope constructions have been proposed and analyzed over the years. In particular, the Billera–Lee construction produces “all possible f -vectors” of simplicial polytopes. Less visible progress was made outside the range of simple or simplicial polytopes — where our measure of progress is that new polytopes “with interesting f -vectors” should be produced. Thus, still “it seems that overall, we are short of examples. The methods for coming up with useful examples in mathematics (or counterexamples to commonly believed conjectures) are even less clear than the methods for proving mathematical statements” (Gil Kalai, 2000). These lecture notes are meant to display a fruitful interplay of these two areas of study: The discussion of f -vector shapes suggests the notion of “extremal” polytopes, that is, of polytopes with “extremal f -vector shapes.” Our choice of constructions to be discussed here is guided by this: We will be looking at constructions that produce interesting f -vector shapes.

[1]  H. S. M. Coxeter,et al.  Vorlesungen über die Theorie der Polyeder , 1935 .

[2]  Michel Balinski,et al.  On the graph structure of convex polyhedra in n-space , 1961 .

[3]  John Riordan,et al.  The number of faces of simplicial polytopes , 1966 .

[4]  D. Barnette,et al.  Projections of 3-polytopes , 1970 .

[5]  Branko Grünbaum,et al.  Preassigning the shape of a face , 1970 .

[6]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[7]  David Barnette,et al.  Projections of f-Vectors of Four-Polytopes , 1973, J. Comb. Theory, Ser. A.

[8]  David W. Barnette,et al.  The projection of the f-vectors of 4-polytopes onto the (E, S)-plane , 1974, Discret. Math..

[9]  I. Gel'fand,et al.  Combinatorial computation of characteristic classes , 1975 .

[10]  W. Thurston The geometry and topology of 3-manifolds , 1979 .

[11]  Katta G. Murty,et al.  Computational complexity of parametric linear programming , 1980, Math. Program..

[12]  L. Billera,et al.  Sufficiency of McMullen's conditions for $f$-vectors of simplicial polytopes , 1980 .

[13]  Anders Björner,et al.  The unimodality conjecture for convex polytopes , 1981 .

[14]  Carl W. Lee,et al.  A Proof of the Sufficiency of McMullen's Conditions for f-Vectors of Simplicial Convex Polytopes , 1981, J. Comb. Theory A.

[15]  P. J. Federico,et al.  Descartes on Polyhedra , 1982 .

[16]  P. J. Federico,et al.  Descartes on Polyhedra: A Study of the De Solidorum Elementis , 1982 .

[17]  I. Gelfand,et al.  Geometry in Grassmannians and a generalization of the dilogarithm , 1982 .

[18]  R. Stanley THE NUMBER OF FACES OF SIMPLICIAL POLYTOPES AND SPHERES a , 1985 .

[19]  Gil Kalai,et al.  Rigidity and the lower bound theorem 1 , 1987 .

[20]  Margaret Bayer,et al.  The extended f-vectors of 4-polytopes , 1987, J. Comb. Theory, Ser. A.

[21]  R. Stanley Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .

[22]  Y. C. Verdière Un principe variationnel pour les empilements de cercles , 1991 .

[23]  Bojan Mohar,et al.  A polynomial time circle packing algorithm , 1993, Discret. Math..

[24]  A. Björner Partial unimodality for f-vectors of simplicial polytopes and spheres , 1993 .

[25]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[26]  Rekha R. Thomas,et al.  Gröbner bases and triangulations of the second hypersimplex , 1995, Comb..

[27]  János Pach,et al.  Combinatorial Geometry , 2012 .

[28]  Jürgen Richter-Gebert Realization Spaces of Polytopes , 1996 .

[29]  Nina Amenta,et al.  Shadows and slices of polytopes , 1996, SCG '96.

[30]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[31]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[32]  G. Ziegler,et al.  Basic properties of convex polytopes , 1997 .

[33]  Martin Aigner,et al.  Proofs from THE BOOK , 1998 .

[34]  R. Pollack,et al.  Advances in Discrete and Computational Geometry , 1999 .

[35]  Gilles Schaeffer,et al.  Random sampling of large planar maps and convex polyhedra , 1999, STOC '99.

[36]  Günter M. Ziegler,et al.  Neighborly Cubical Polytopes , 2000, Discret. Comput. Geom..

[37]  Günter M. Ziegler,et al.  A Census of Flag-vectors of 4-Polytopes , 2000 .

[38]  Michael Joswig,et al.  polymake: a Framework for Analyzing Convex Polytopes , 2000 .

[39]  Michael Joswig,et al.  Polymake: an approach to modular software design in computational geometry , 2001, SCG '01.

[40]  G. Ziegler Face numbers of 4-Polytopes and 3-Spheres , 2002, math/0208073.

[41]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[42]  G. Ziegler,et al.  Fat 4-polytopes and fatter 3-spheres , 2002, math/0204007.

[43]  A. Bobenko,et al.  Variational principles for circle patterns and Koebe’s theorem , 2002, math/0203250.

[44]  Martin Grötschel,et al.  Cardinality Homogeneous Set Systems, Cycles in Matroids, and Associated Polytopes , 2004, The Sharpest Cut.

[45]  Günter M. Ziegler,et al.  The Et-Construction for Lattices, Spheres and Polytopes , 2004, Discret. Comput. Geom..

[46]  Boris Springborn A unique representation of polyhedral types. Centering via Möbius transformations , 2004, math/0401005.

[47]  Gnter Rote,et al.  The number of spanning trees in a planar graph , 2005 .

[48]  Ewgenij Gawrilow,et al.  Geometric Reasoning with polymake , 2005, math/0507273.

[50]  Raman Sanyal On the Combinatorics of Projected Deformed Products , 2005 .

[51]  A. Werner,et al.  Constructions for 4-Polytopes and the Cone of Flag Vectors , 2005, math/0511751.

[52]  Ares Ribó Mor Realization and counting problems for planar structures , 2006 .