Application of the phase space action principle to finite-size particle plasma simulations in the drift-kinetic approximation

Abstract We formulate a finite-size particle numerical model of strongly magnetized plasmas in the drift-kinetic approximation. We use the phase space action as an alternative to previous variational formulations based on Low’s Lagrangian or on a Hamiltonian with a non-canonical Poisson bracket. The useful property of this variational principle is that it allows independent transformations of particle coordinates and velocities, i.e., transformations in particle phase space. With such transformations, a finite degree-of-freedom drift-kinetic action is obtained through time-averaging of the finite degree-of-freedom fully-kinetic action. Variation of the drift-kinetic Lagrangian density leads to a self-consistent, macro-particles and fields numerical model. Since the computational particles utilize only guiding center coordinates and velocities, there is a large computational advantage in the time integration part of the algorithm. Numerical comparison between the time-averaged fully-kinetic and drift-kinetic charge and current, deposited on a computational grid, offers insight into the range of validity of the model. Being based on a variational principle, the algorithm respects the energy conserving property of the underlying continuous system. The development in this paper serves to further emphasize the advantages of using variational approaches in plasma particle simulations.

[1]  A. Stamm,et al.  Variational formulation of particle algorithms for kinetic electromagnetic plasma simulations , 2013, 2013 Abstracts IEEE International Conference on Plasma Science (ICOPS).

[2]  A. Pochelon Electron Cyclotron Resonance Ion Sources and ECR Plasmas , 1997 .

[3]  F. Low,et al.  A Lagrangian formulation of the Boltzmann-Vlasov equation for plasmas , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  M. Kruskal,et al.  The gyration of a charged particle , 1964 .

[5]  Estelle Cormier-Michel,et al.  Unphysical kinetic effects in particle-in-cell modeling of laser wakefield accelerators. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  W. Lee,et al.  Gyrokinetic Particle Simulation Model , 1987 .

[7]  F. R. Scott,et al.  The Adiabatic Motion of Charged Particles , 1964 .

[8]  W. W. Lee,et al.  Gyrokinetic approach in particle simulation , 1981 .

[9]  T. Mckeown Mechanics , 1970, The Mathematics of Fluid Flow Through Porous Media.

[10]  E. Evstatiev A Model Suitable for Numerical Investigation of Beam-Soliton Interaction in Electrostatic Plasmas , 2013 .

[11]  Robert G. Littlejohn,et al.  A guiding center Hamiltonian: A new approach , 1979 .

[12]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[13]  Robert G. Littlejohn,et al.  Variational principles of guiding centre motion , 1983, Journal of Plasma Physics.

[14]  Zhihong Lin,et al.  A particle simulation of current sheet instabilities under finite guide field , 2008 .

[15]  Alain J. Brizard,et al.  Foundations of Nonlinear Gyrokinetic Theory , 2007 .

[16]  Ying Lin,et al.  An improved gyrokinetic electron and fully kinetic ion particle simulation scheme: benchmark with a linear tearing mode , 2011 .

[17]  M. Kraus Variational integrators in plasma physics , 2013, 1307.5665.

[18]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[19]  H. Lewis,et al.  Energy-conserving numerical approximations for Vlasov plasmas , 1970 .

[20]  Huanchun Ye,et al.  Action principles for the Vlasov equation , 1992 .

[21]  H. Okuda,et al.  A Simulation Model for Studying Low-Frequency Microinstabilities , 1978 .

[22]  Hong Qin,et al.  Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme , 2012, 1401.6723.

[23]  Bradley Allan Shadwick,et al.  Variational formulation of macro-particle plasma simulation algorithms , 2014 .

[24]  P. Morrison,et al.  Hamiltonian description of the ideal fluid , 1998 .

[25]  Luis Chacón,et al.  An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm , 2011, J. Comput. Phys..

[26]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[27]  Bradley A. Shadwick,et al.  Variational Formulation of Macroparticle Models for Electromagnetic Plasma Simulations , 2013, IEEE Transactions on Plasma Science.

[28]  Jianyuan Xiao,et al.  A variational multi-symplectic particle-in-cell algorithm with smoothing functions for the Vlasov-Maxwell system , 2013 .

[29]  Hideo Okuda,et al.  Nonphysical noises and instabilities in plasma simulation due to a spatial grid , 1972 .

[30]  Zhihong Lin,et al.  A gyrokinetic electron and fully kinetic ion plasma simulation model , 2005 .

[31]  P. Morrison,et al.  The Maxwell-Vlasov equations as a continuous hamiltonian system , 1980 .

[32]  Laurent Villard,et al.  Gyrokinetic simulations of turbulent transport , 2010 .

[33]  Stefano Markidis,et al.  The energy conserving particle-in-cell method , 2011, J. Comput. Phys..

[34]  J. W. Eastwood,et al.  The virtual particle electromagnetic particle-mesh method , 1991 .

[35]  D. Correa-Restrepo,et al.  Regularization of Hamilton-Lagrangian Guiding Center Theories , 1985 .