Updating dopamine reward signals

[1]  R. Rescorla,et al.  A theory of Pavlovian conditioning : Variations in the effectiveness of reinforcement and nonreinforcement , 1972 .

[2]  R. Roth,et al.  Comparison of effects of L-dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurones. , 1973, Nature: New biology.

[3]  R. Solomon,et al.  An opponent-process theory of motivation. I. Temporal dynamics of affect. , 1974, Psychological review.

[4]  P. J. Sheafor "Pseudoconditioned" jaw movements of the rabbit reflect associations conditioned to contextual background cues. , 1975, Journal of experimental psychology. Animal behavior processes.

[5]  R. Solomon,et al.  An Opponent-Process Theory of Motivation , 1978 .

[6]  B. Bunney,et al.  Effect of sensory stimuli on the activity of dopaminergic neurons: involvement of non-dopaminergic nigral neurons and striato-nigral pathways. , 1980, Life sciences.

[7]  Shoji Nakamura,et al.  Inhibition of neuronal activity of the substantia nigra by noxious stimuli and its modification by the caudate nucleus , 1980, Brain Research.

[8]  A G Barto,et al.  Toward a modern theory of adaptive networks: expectation and prediction. , 1981, Psychological review.

[9]  T. F. Freund,et al.  Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines , 1984, Neuroscience.

[10]  B. Bunney,et al.  Activity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin , 1987, Brain Research.

[11]  W. Schultz,et al.  Responses of nigrostriatal dopamine neurons to high-intensity somatosensory stimulation in the anesthetized monkey. , 1987, Journal of neurophysiology.

[12]  P. Goldman-Rakic,et al.  Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[13]  W. Schultz,et al.  Dopamine neurons of the monkey midbrain: contingencies of responses to stimuli eliciting immediate behavioral reactions. , 1990, Journal of neurophysiology.

[14]  F. H. Lopes da Silva,et al.  Synaptic Plasticity in an In Vitro Slice Preparation of the Rat Nucleus Accumbens , 1993, The European journal of neuroscience.

[15]  W. Schultz,et al.  Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  J. Lisman,et al.  D1/D5 Dopamine Receptor Activation Increases the Magnitude of Early Long-Term Potentiation at CA1 Hippocampal Synapses , 1996, The Journal of Neuroscience.

[17]  W. Schultz,et al.  Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli , 1996, Nature.

[18]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  J. Bargas,et al.  D1 Receptor Activation Enhances Evoked Discharge in Neostriatal Medium Spiny Neurons by Modulating an L-Type Ca2+ Conductance , 1997, The Journal of Neuroscience.

[20]  J. Bargas,et al.  D 1 Receptor Activation Enhances Evoked Discharge in Neostriatal Medium Spiny Neurons by Modulating an L-Type Ca 2 1 Conductance , 1997 .

[21]  J. Desce,et al.  Dopamine facilitates long-term depression of glutamatergic transmission in rat prefrontal cortex , 1998, Neuroscience.

[22]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[23]  K. Berridge,et al.  What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? , 1998, Brain Research Reviews.

[24]  F. Guarraci,et al.  An electrophysiological characterization of ventral tegmental area dopaminergic neurons during differential pavlovian fear conditioning in the awake rabbit , 1999, Behavioural Brain Research.

[25]  T. Jay,et al.  Essential Role of D1 But Not D2 Receptors in the NMDA Receptor-Dependent Long-Term Potentiation at Hippocampal-Prefrontal Cortex Synapses In Vivo , 2000, The Journal of Neuroscience.

[26]  P. Greengard,et al.  Dopamine and cAMP-Regulated Phosphoprotein 32 kDa Controls Both Striatal Long-Term Depression and Long-Term Potentiation, Opposing Forms of Synaptic Plasticity , 2000, The Journal of Neuroscience.

[27]  J. Wickens,et al.  Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. , 2001, Journal of neurophysiology.

[28]  J. Wickens,et al.  A cellular mechanism of reward-related learning , 2001, Nature.

[29]  K. Tang,et al.  Dopamine-dependent synaptic plasticity in striatum during in vivo development. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[30]  B. Everitt,et al.  Differential Involvement of NMDA, AMPA/Kainate, and Dopamine Receptors in the Nucleus Accumbens Core in the Acquisition and Performance of Pavlovian Approach Behavior , 2001, The Journal of Neuroscience.

[31]  W. Schultz,et al.  Dopamine responses comply with basic assumptions of formal learning theory , 2001, Nature.

[32]  A. Grace,et al.  Dopamine-mediated modulation of odour-evoked amygdala potentials during pavlovian conditioning , 2002, Nature.

[33]  Mitsuo Kawato,et al.  Multiple Model-Based Reinforcement Learning , 2002, Neural Computation.

[34]  D. A. Baxter,et al.  Operant Reward Learning in Aplysia: Neuronal Correlates and Mechanisms , 2002, Science.

[35]  W. Schultz,et al.  Coding of Predicted Reward Omission by Dopamine Neurons in a Conditioned Inhibition Paradigm , 2003, The Journal of Neuroscience.

[36]  W. Schultz,et al.  Discrete Coding of Reward Probability and Uncertainty by Dopamine Neurons , 2003, Science.

[37]  J. Bolam,et al.  Uniform Inhibition of Dopamine Neurons in the Ventral Tegmental Area by Aversive Stimuli , 2004, Science.

[38]  O. Hikosaka,et al.  Dopamine Neurons Can Represent Context-Dependent Prediction Error , 2004, Neuron.

[39]  Andrew M. J. Young,et al.  Increased extracellular dopamine in nucleus accumbens in response to unconditioned and conditioned aversive stimuli: studies using 1 min microdialysis in rats , 2004, Journal of Neuroscience Methods.

[40]  M. Roesch,et al.  Neuronal activity in primate orbitofrontal cortex reflects the value of time. , 2005, Journal of neurophysiology.

[41]  W. Schultz,et al.  Adaptive Coding of Reward Value by Dopamine Neurons , 2005, Science.

[42]  M. Roesch,et al.  Neuronal activity dependent on anticipated and elapsed delay in macaque prefrontal cortex, frontal and supplementary eye fields, and premotor cortex. , 2005, Journal of neurophysiology.

[43]  P. Glimcher,et al.  Midbrain Dopamine Neurons Encode a Quantitative Reward Prediction Error Signal , 2005, Neuron.

[44]  P. Redgrave,et al.  Nociceptive responses of midbrain dopaminergic neurones are modulated by the superior colliculus in the rat , 2006, Neuroscience.

[45]  Robert C. Malenka,et al.  Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models , 2007, Nature.

[46]  P. Glimcher,et al.  Statistics of midbrain dopamine neuron spike trains in the awake primate. , 2007, Journal of neurophysiology.

[47]  M. Roesch,et al.  Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards , 2007, Nature Neuroscience.

[48]  E. Izhikevich Solving the distal reward problem through linkage of STDP and dopamine signaling , 2007, BMC Neuroscience.

[49]  R. Wightman,et al.  Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens , 2007, Nature Neuroscience.

[50]  W. Newsome,et al.  The temporal precision of reward prediction in dopamine neurons , 2008, Nature Neuroscience.

[51]  E. Vaadia,et al.  Midbrain Dopaminergic Neurons and Striatal Cholinergic Interneurons Encode the Difference between Reward and Aversive Events at Different Epochs of Probabilistic Classical Conditioning Trials , 2008, The Journal of Neuroscience.

[52]  R. Wightman,et al.  Real-time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli , 2008, Nature Neuroscience.

[53]  R. Palmiter,et al.  Role of NMDA Receptors in Dopamine Neurons for Plasticity and Addictive Behaviors , 2008, Neuron.

[54]  W. Schultz,et al.  Influence of Reward Delays on Responses of Dopamine Neurons , 2008, The Journal of Neuroscience.

[55]  P. Greengard,et al.  Dichotomous Dopaminergic Control of Striatal Synaptic Plasticity , 2008, Science.

[56]  J. Kerr,et al.  Dopamine Receptor Activation Is Required for Corticostriatal Spike-Timing-Dependent Plasticity , 2008, The Journal of Neuroscience.

[57]  Daeyeol Lee,et al.  Valuation of uncertain and delayed rewards in primate prefrontal cortex , 2009, Neural Networks.

[58]  R. Palmiter,et al.  Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior , 2009, Proceedings of the National Academy of Sciences.

[59]  G. Bi,et al.  Gain in sensitivity and loss in temporal contrast of STDP by dopaminergic modulation at hippocampal synapses , 2009, Proceedings of the National Academy of Sciences.

[60]  O. Hikosaka,et al.  Two types of dopamine neuron distinctly convey positive and negative motivational signals , 2009, Nature.

[61]  M. Ungless,et al.  Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli , 2009, Proceedings of the National Academy of Sciences.

[62]  Mark T. Harnett,et al.  Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons , 2009, Neuron.

[63]  J. Bolam,et al.  Activity of Neurochemically Heterogeneous Dopaminergic Neurons in the Substantia Nigra during Spontaneous and Driven Changes in Brain State , 2009, The Journal of Neuroscience.

[64]  K. Deisseroth,et al.  Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning , 2009, Science.

[65]  M. Roesch,et al.  Ventral Striatal Neurons Encode the Value of the Chosen Action in Rats Deciding between Differently Delayed or Sized Rewards , 2009, The Journal of Neuroscience.

[66]  Takeo Watanabe,et al.  Temporally Extended Dopamine Responses to Perceptually Demanding Reward-Predictive Stimuli , 2010, The Journal of Neuroscience.

[67]  Ethan S. Bromberg-Martin,et al.  Dopamine in Motivational Control: Rewarding, Aversive, and Alerting , 2010, Neuron.

[68]  Simon Hong,et al.  A pallidus-habenula-dopamine pathway signals inferred stimulus values. , 2010, Journal of neurophysiology.

[69]  S. B. Evans,et al.  Absence of NMDA receptors in dopamine neurons attenuates dopamine release but not conditioned approach during Pavlovian conditioning , 2010, Proceedings of the National Academy of Sciences.

[70]  W. Schultz Dopamine signals for reward value and risk: basic and recent data , 2010, Behavioral and Brain Functions.

[71]  Kenway Louie,et al.  Separating Value from Choice: Delay Discounting Activity in the Lateral Intraparietal Area , 2010, The Journal of Neuroscience.

[72]  J. Tsien,et al.  Convergent Processing of Both Positive and Negative Motivational Signals by the VTA Dopamine Neuronal Populations , 2011, PloS one.

[73]  P. Fletcher,et al.  Faculty Opinions recommendation of A selective role for dopamine in stimulus-reward learning. , 2011 .

[74]  榎本 一紀 Dopamine neurons learn to encode the long-term value of multiple future rewards , 2011 .

[75]  R. Palmiter,et al.  The Contribution of NMDA Receptor Signaling in the Corticobasal Ganglia Reward Network to Appetitive Pavlovian Learning , 2011, The Journal of Neuroscience.

[76]  A. Grace,et al.  Aversive Stimuli Alter Ventral Tegmental Area Dopamine Neuron Activity via a Common Action in the Ventral Hippocampus , 2011, The Journal of Neuroscience.

[77]  Ilana B. Witten,et al.  Recombinase-Driver Rat Lines: Tools, Techniques, and Optogenetic Application to Dopamine-Mediated Reinforcement , 2011, Neuron.

[78]  A. Cooper,et al.  Predictive Reward Signal of Dopamine Neurons , 2011 .

[79]  P. Glimcher Understanding dopamine and reinforcement learning: The dopamine reward prediction error hypothesis , 2011, Proceedings of the National Academy of Sciences.

[80]  Daeyeol Lee,et al.  Heterogeneous Coding of Temporally Discounted Values in the Dorsal and Ventral Striatum during Intertemporal Choice , 2011, Neuron.

[81]  J. J. Cone,et al.  Primary food reward and reward‐predictive stimuli evoke different patterns of phasic dopamine signaling throughout the striatum , 2011, The European journal of neuroscience.

[82]  R. Romo,et al.  Dopamine neurons code subjective sensory experience and uncertainty of perceptual decisions , 2011, Proceedings of the National Academy of Sciences.

[83]  J. Tsien,et al.  NMDA Receptors in Dopaminergic Neurons Are Crucial for Habit Learning , 2011, Neuron.

[84]  M. Morales,et al.  Duration of Inhibition of Ventral Tegmental Area Dopamine Neurons Encodes a Level of Conditioned Fear , 2011, The Journal of Neuroscience.

[85]  S. Lammel,et al.  Projection-Specific Modulation of Dopamine Neuron Synapses by Aversive and Rewarding Stimuli , 2011, Neuron.

[86]  R. Palmiter,et al.  Attenuating GABAA Receptor Signaling in Dopamine Neurons Selectively Enhances Reward Learning and Alters Risk Preference in Mice , 2011, The Journal of Neuroscience.

[87]  J. Bolam,et al.  Structural correlates of heterogeneous in vivo activity of midbrain dopaminergic neurons , 2012, Nature Neuroscience.

[88]  Anne E Carpenter,et al.  Neuron-type specific signals for reward and punishment in the ventral tegmental area , 2011, Nature.

[89]  R. Wightman,et al.  Aversive stimulus differentially triggers subsecond dopamine release in reward regions , 2012, Neuroscience.

[90]  G. Stuber,et al.  Activation of VTA GABA Neurons Disrupts Reward Consumption , 2012, Neuron.

[91]  Kelly R. Tan,et al.  GABA Neurons of the VTA Drive Conditioned Place Aversion , 2012, Neuron.

[92]  E. Miller,et al.  The Role of Prefrontal Dopamine D1 Receptors in the Neural Mechanisms of Associative Learning , 2012, Neuron.

[93]  C. Fiorillo,et al.  Optogenetic Mimicry of the Transient Activation of Dopamine Neurons by Natural Reward Is Sufficient for Operant Reinforcement , 2012, PloS one.