Vortex-bound solitons in topological superfluid 3He

The different superfluid phases of 3He are described by p-wave order parameters that include anisotropy axes both in the orbital and spin spaces. The anisotropy axes characterize the broken symmetries in these macroscopically coherent quantum many-body systems. The systems’ free energy has several degenerate minima for certain orientations of the anisotropy axes. As a result, spatial variation of the order parameter between two such regions, settled in different energy minima, forms a topological soliton. Such solitons can terminate in the bulk liquid, where the termination line forms a vortex with trapped circulation of mass and spin superfluid currents. Here we discuss possible soliton-vortex structures based on the symmetry and topology arguments and focus on the three structures observed in experiments: solitons bounded by spin-mass vortices in the B phase, solitons bounded by half-quantum vortices (HQVs) in the polar and polar-distorted A phases, and the composite defect formed by a half-quantum vortex, soliton and the Kibble-Lazarides-Shafi wall in the polar-distorted B phase. The observations are based on nuclear magnetic resonance (NMR) techniques and are of three types: first, solitons can form a potential well for trapped spin waves, observed as an extra peak in the NMR spectrum at shifted frequency; second, they can increase the relaxation rate of the NMR spin precession; lastly, the soliton can present the boundary conditions for the anisotropy axes in bulk, modifying the bulk NMR signal. Owing to solitons’ prominent NMR signatures and the ability to manipulate their structure with external magnetic field, solitons have become an important tool for probing and controlling the structure and dynamics of superfluid 3He, in particular HQVs with core-bound Majorana modes.

[1]  M. Nitta Relations among topological solitons , 2022, Physical Review D.

[2]  H. Takeuchi Spin-current instability at a magnetic domain wall in a ferromagnetic superfluid: A generation mechanism of eccentric fractional skyrmions , 2021, Physical Review A.

[3]  G. Lazarides,et al.  Dirac plus Nambu monopoles in the Standard Model , 2021, Physical Review D.

[4]  J. Maciejko,et al.  Strong-coupling corrections to hard domain walls in superfluid He3−B , 2021, Physical Review B.

[5]  G. Lazarides,et al.  Triply charged monopole and magnetic quarks , 2021, Physics Letters B.

[6]  M. Nitta,et al.  Non-Abelian Alice strings in two-flavor dense QCD , 2020, 2011.09947.

[7]  G. Volovik,et al.  Suppressing the Kibble-Zurek Mechanism by a Symmetry-Violating Bias. , 2019, Physical review letters.

[8]  E. Shuryak Monopoles , 2021, Nonperturbative Topological Phenomena in QCD and Related Theories.

[9]  M. Nitta Confinement and moduli locking of Alice strings and monopoles , 2020, Journal of High Energy Physics.

[10]  K. Zhang One-dimensional nexus objects, network of Kibble-Lazarides-Shafi string walls, and their spin dynamic response in polar-distortedB-phase ofHe3 , 2020, Physical Review Research.

[11]  V. V. Dmitriev,et al.  Superfluid 3He in a Nematic Aerogel , 2020, Journal of Experimental and Theoretical Physics.

[12]  J. Mäkinen,et al.  Exceeding the Landau speed limit with topological Bogoliubov Fermi surfaces , 2020, 2002.11492.

[13]  Kuang Zhang,et al.  String monopoles, string walls, vortex skyrmions, and nexus objects in the polar distorted B phase of He3 , 2020, Physical Review Research.

[14]  H. Takeuchi,et al.  Phase diagram of solitons in the polar phase of a spin-1 Bose-Einstein condensate , 2020, Physical Review Research.

[15]  G. Volovik,et al.  Topological nodal line in superfluid $^3$He and the Anderson theorem , 2019, 1908.01645.

[16]  G. Lazarides,et al.  Monopoles, strings, and necklaces in SO(10) and E6 , 2019, Journal of High Energy Physics.

[17]  S. Seo,et al.  Observation of Wall-Vortex Composite Defects in a Spinor Bose-Einstein Condensate. , 2018, Physical review letters.

[18]  V. Dmitriev,et al.  Half-quantum vortices and walls bounded by strings in the polar-distorted phases of topological superfluid 3He , 2018, Nature Communications.

[19]  J. Mäkinen,et al.  Spin, Orbital, Weyl and Other Glasses in Topological Superfluids , 2018, Journal of Low Temperature Physics.

[20]  J. Parpia,et al.  Evidence for a Spatially Modulated Superfluid Phase of ^{3}He under Confinement. , 2018, Physical review letters.

[21]  Maureen T. Carroll Geometry , 2017, MAlkahtani Mathematics.

[22]  V. V. Zavjalov Linear NMR in the Polar Phase of 3He in Aerogel , 2018, JETP Letters.

[23]  F. Takahashi,et al.  Unified origin of axion and monopole dark matter, and solution to the domain-wall problem , 2018, Physical Review D.

[24]  T. Takagi,et al.  Chiral Domain Structure in Superfluid ^{3}He-A Studied by Magnetic Resonance Imaging. , 2018, Physical review letters.

[25]  R. Ikeda,et al.  Stability of half-quantum vortices in equal-spin pairing states of He3 , 2018, Physical Review B.

[26]  I. Fomin Analog of the Anderson Theorem for the Polar Phase of Liquid 3He in a Nematic Aerogel , 2018, Journal of Experimental and Theoretical Physics.

[27]  P. Kapitza Analog of Anderson theorem for the polar phase of liquid 3 He in nematic aerogel , 2018 .

[28]  J. Parpia,et al.  The A-B transition in superfluid helium-3 under confinement in a thin slab geometry , 2016, Nature Communications.

[29]  V. Mineev NMR Properties of the Polar Phase of Superfluid $$^3$$3He in Anisotropic Aerogel Under Rotation , 2016 .

[30]  V. Dmitriev,et al.  Observation of Half-Quantum Vortices in Topological Superfluid ^{3}He. , 2015, Physical review letters.

[31]  V. Dmitriev,et al.  Polar Phase of Superfluid (3)He in Anisotropic Aerogel. , 2015, Physical review letters.

[32]  P. N. Martynov,et al.  Structure and properties of “nematically ordered” aerogels , 2015 .

[33]  K. Kono,et al.  Observation of Intrinsic Magnus Force and Direct Detection of Chirality in Superfluid 3 He-A , 2015 .

[34]  W. Kwon,et al.  Half-Quantum Vortices in an Antiferromagnetic Spinor Bose-Einstein Condensate. , 2015, Physical review letters.

[35]  D. Marsh,et al.  Axion dark matter, solitons and the cusp–core problem , 2015, 1502.03456.

[36]  T. Mizushima,et al.  Symmetry protected topological superfluid 3He-B , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  V. V. Dmitriev,et al.  B phase with polar distortion in superfluid 3He in “ordered” aerogel , 2014 .

[38]  E. Thuneberg,et al.  Hard domain walls in superfluid 3 He-B , 2014, 1408.3623.

[39]  R. Ikeda,et al.  Possibility of Unconventional Pairing States in Superfluid 3He in Uniaxially Anisotropic Aerogels , 2014 .

[40]  V. Mineev Half-Quantum Vortices in Polar Phase of Superfluid $$^{3}$$3He , 2014 .

[41]  W. Halperin,et al.  Stability of superfluid 3He-B in compressed aerogel. , 2014, Physical review letters.

[42]  I. Procaccia,et al.  Evolution of a neutron-initiated micro big bang in superfluid 3He−B , 2013, 1309.1005.

[43]  J. Sauls,et al.  Superfluid Phases of 3He in a Periodic Confined Geometry , 2013, 1307.7308.

[44]  W. Halperin,et al.  The superfluid glass phase of 3He-A , 2013, Nature Physics.

[45]  D. Drung,et al.  Phase Diagram of the Topological Superfluid 3He Confined in a Nanoscale Slab Geometry , 2013, Science.

[46]  P. N. Martynov,et al.  Phase diagram of superfluid 3He in “nematically ordered” aerogel , 2012, 1202.5634.

[47]  P. Goldbart,et al.  Observation of Half-Height Magnetization Steps in Sr2RuO4 , 2011, Science.

[48]  V. Dmitriev,et al.  Orbital glass and spin glass states of 3He-A in aerogel , 2010, 1004.5483.

[49]  A. Kavokin,et al.  Observation of Half-Quantum Vortices in an Exciton-Polariton Condensate , 2009, Science.

[50]  A. Leggett,et al.  Spin polarization of half-quantum vortex in systems with equal spin pairing. , 2009, Physical review letters.

[51]  Helmut Eschrig,et al.  Microscopic theory of superconductivity , 1969 .

[52]  J. Davis,et al.  Strong coupling corrections to the Ginzburg-Landau theory of superfluid He3 , 2007, 0711.3225.

[53]  M. Kubota,et al.  Pinning of texture and vortices of the rotating B-like phase of superfluid 3He confined in a 98% aerogel. , 2005, Physical review letters.

[54]  A. Golov,et al.  Intrinsic pinning of vorticity by domain walls of l texture in superfluid 3He-A. , 2004, Physical review letters.

[55]  G. Volovik,et al.  The Universe in a Helium Droplet , 2003 .

[56]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[57]  L. Landau The theory of a Fermi liquid , 2003 .

[58]  F. Zhou Spin correlation and discrete symmetry in spinor Bose-Einstein condensates. , 2001, Physical review letters.

[59]  D. Ivanov Non-Abelian statistics of half-quantum vortices in p-wave superconductors. , 2000, Physical review letters.

[60]  Kibble,et al.  Composite defect extends analogy between cosmology and 3He , 2000, Physical review letters.

[61]  R. Blaauwgeers,et al.  Double-quantum vortex in superfluid 3He-A , 2000, Nature.

[62]  G. Volovik Monopoles and fractional vortices in chiral superconductors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[63]  S. Fisher,et al.  Superfluid 3He Simulation of Cosmic String Creation in the Early Universe , 1998 .

[64]  V. Mineev Topologically stable defects and solitons in ordered media , 1998 .

[65]  T. Kibble,et al.  On phase ordering behind the propagating front of a second-order transition , 1996, cond-mat/9612075.

[66]  Wen Xu,et al.  Vortex formation in neutron-irradiated superfluid 3He as an analogue of cosmological defect formation , 1996, Nature.

[67]  G. R. Pickett,et al.  Laboratory simulation of cosmic string formation in the early Universe using superfluid 3He , 1996, Nature.

[68]  Sun,et al.  Direct imaging of integer and half-integer Josephson vortices in high-Tc grain boundaries. , 1996, Physical review letters.

[69]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[70]  I. Isaacs Algebra, a graduate course , 1994 .

[71]  Dmitriev,et al.  Combined spin-mass vortex with soliton tail in superfluid 3He-B. , 1992, Physical review letters.

[72]  G. Volovik Exotic Properties of Superfluid Helium 3 , 1992 .

[73]  D. Vollhardt,et al.  The Superfluid Phases Of Helium 3 , 1990 .

[74]  M. Salomaa,et al.  Cosmiclike domain walls in superfluid 3He-B: Instantons and diabolical points in (k,r) space. , 1988, Physical review. B, Condensed matter.

[75]  Maki,et al.  Satellite magnetic resonances of a bound pair of half-quantum vortices in rotating superfluid 3He-A. , 1987, Physical review. B, Condensed matter.

[76]  W. H. Zurek,et al.  Cosmological experiments in superfluid helium? , 1985, Nature.

[77]  Siddhartha Sen,et al.  Topology and geometry for physicists , 1983 .

[78]  G. Lazarides,et al.  Axion Models with No Domain Wall Problem , 1982 .

[79]  T. Kibble,et al.  Walls bounded by strings , 1982 .

[80]  T. Kibble,et al.  Strings in SO(10) , 1982 .

[81]  I. Dzyaloshinskiǐ,et al.  Poisson brackets in condensed matter physics , 1980 .

[82]  T W B Kibble,et al.  Topology of cosmic domains and strings , 1976 .

[83]  N. D. Mermin,et al.  Circulation and Angular Momentum in the A Phase of Superfluid Helium-3 , 1976 .

[84]  A. Leggett,et al.  A theoretical description of the new phases of liquid He-3 , 1975 .

[85]  P. Anderson Some macroscopic considerations on motions of anisotropic superfluids , 1973 .

[86]  P. Anderson,et al.  Properties of a Possible Superfluid State of 3He , 1973, Nature.

[87]  R. Stephenson A and V , 1962, The British journal of ophthalmology.