Global atmospheric carbon budget : results from an e semble of atmo pheric CO 2 inversions

Introduction Conclusions References

[1]  Taro Takahashi,et al.  Sea–air CO 2 fluxes in the Southern Ocean for the period 1990–2009 , 2013 .

[2]  C. Sweeney,et al.  Sea-air CO2 fluxes in the Southern Ocean: 1990–2009 , 2013 .

[3]  R. Houghton,et al.  Effects of Land‐Use Change on the Carbon Balance of Terrestrial Ecosystems , 2013 .

[4]  Taro Takahashi,et al.  Global ocean carbon uptake: magnitude, variability and trends , 2012 .

[5]  Ryoichi Imasu,et al.  Imposing strong constraints on tropical terrestrial CO2 fluxes using passenger aircraft based measurements , 2011 .

[6]  Shamil Maksyutov,et al.  TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere , 2011 .

[7]  Corinne Le Quéré,et al.  An international effort to quantify regional carbon fluxes , 2011 .

[8]  G. Marland,et al.  Monthly, global emissions of carbon dioxide from fossil fuel consumption , 2011 .

[9]  Fabienne Maignan,et al.  CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements , 2010 .

[10]  J. Canadell,et al.  Can we reconcile atmospheric estimates of the Northern terrestrial carbon sink with land-based accounting? , 2010 .

[11]  J. Lelieveld,et al.  The European carbon balance. Part 4: integration of carbon and other trace‐gas fluxes , 2010 .

[12]  Philippe Ciais,et al.  Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations , 2010 .

[13]  M. Ikegami,et al.  New technique to analyse global distributions of CO2 concentrations and fluxes from non-processed observational data , 2010 .

[14]  Nicolas Gruber,et al.  Trends and regional distributions of land and ocean carbon sinks , 2009 .

[15]  Philippe Ciais,et al.  The carbon balance of terrestrial ecosystems in China , 2009, Nature.

[16]  P. Rayner,et al.  Interannual variability of the global carbon cycle (1992–2005) inferred by inversion of atmospheric CO2 and δ13CO2 measurements , 2008 .

[17]  R. Vautard,et al.  TransCom model simulations of hourly atmospheric CO2: Experimental overview and diurnal cycle results for 2002 , 2008, Global Biogeochemical Cycles.

[18]  J. Randerson,et al.  An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker , 2007, Proceedings of the National Academy of Sciences.

[19]  P. Ciais,et al.  Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2 , 2007, Science.

[20]  A. Jacobson,et al.  A joint atmosphere‐ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global‐scale fluxes , 2007 .

[21]  Shamil Maksyutov,et al.  Sensitivity of inverse estimation of annual mean CO2 sources and sinks to ocean‐only sites versus all‐sites observational networks , 2006, Geophysical Research Letters.

[22]  Kevin R. Gurney,et al.  TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003 , 2006 .

[23]  Philippe Bousquet,et al.  Inferring CO2 sources and sinks from satellite observations: Method and application to TOVS data , 2005 .

[24]  Dusanka Zupanski,et al.  An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations , 2005 .

[25]  Shamil Maksyutov,et al.  Interannual and decadal changes in the sea‐air CO2 flux from atmospheric CO2 inverse modeling , 2005 .

[26]  Shamil Maksyutov,et al.  Role of biomass burning and climate anomalies for land‐atmosphere carbon fluxes based on inverse modeling of atmospheric CO2 , 2005, Global Biogeochemical Cycles.

[27]  Kevin R. Gurney,et al.  Sensitivity of atmospheric CO2 inversions to seasonal and interannual variations in fossil fuel emissions , 2005 .

[28]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[29]  Philippe Ciais,et al.  Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks , 2004, Global Biogeochemical Cycles.

[30]  S. Houweling,et al.  Time-dependent atmospheric CO2 inversions based on interannually varying tracer transport , 2003 .

[31]  R. Feely,et al.  A first estimate of present and preindustrial air‐sea CO2 flux patterns based on ocean interior carbon measurements and models , 2003 .

[32]  Kevin R. Gurney,et al.  On error estimation in atmospheric CO2 inversions , 2002 .

[33]  I. Enting Inverse problems in atmospheric constituent transport , 2002 .

[34]  P. Stark Inverse problems as statistics , 2002 .

[35]  Taro Takahashi,et al.  Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models , 2002, Nature.

[36]  B R Hunt,et al.  Local low dimensionality of atmospheric dynamics. , 2001, Physical review letters.

[37]  Thomas Kaminski,et al.  On aggregation errors in atmospheric transport inversions , 2001 .

[38]  G. Madec,et al.  Interannual variability of the oceanic sink of CO2 from 1979 through 1997 , 2000 .

[39]  Corinne Le Quéré,et al.  Regional changes in carbon dioxide fluxes of land and oceans since 1980. , 2000, Science.

[40]  R. Dargaville,et al.  Implications of interannual variability in atmospheric circulation on modeled CO2 concentrations and source estimates , 2000 .

[41]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[42]  Ian G. Enting,et al.  Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2 observations* , 1999 .

[43]  Pierre Friedlingstein,et al.  Three-dimensional transport and concentration of SF6. A model intercomparison study (TransCom 2) , 1999 .

[44]  R. Errico What is an adjoint model , 1997 .

[45]  Philippe Courtier,et al.  Unified Notation for Data Assimilation : Operational, Sequential and Variational , 1997 .

[46]  P. Tans,et al.  Latitudinal distribution of the sources and sinks of atmospheric carbon dioxide derived from surface observations and an atmospheric transport model , 1989 .

[47]  I. Enting,et al.  Seasonal sources and sinks of atmospheric CO2 Direct inversion of filtered data , 1989 .

[48]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[49]  Philippe Ciais,et al.  Importance of fossil fuel emission uncertainties over Europe for CO2 modeling: model intercomparison , 2009 .

[50]  S. Itch,et al.  Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs) , 2008 .

[51]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[52]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[53]  M. R. R A U Pa C H,et al.  Model – data synthesis in terrestrial carbon observation : methods , data requirements and data uncertainty specifications , 2005 .

[54]  C. Sweeney,et al.  Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects , 2002 .

[55]  Taro Takahashi,et al.  Net sea-air CO2 flux over the global oceans: An improved estimate based on the sea-air pCO2 difference , 1999 .

[56]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[57]  A synthesis of carbon dioxide emissions from fossil-fuel combustion , 2022 .

[58]  P. Ciais,et al.  Archived Version from Ncdocks Institutional Repository a Synthesis of Carbon Dioxide Emissions from Fossil-fuel Combustion Title: a Synthesis of Carbon Dioxide Emissions from Fossil-fuel Combustion a Synthesis of Carbon Dioxide Emissions from Fossil-fuel Combustion , 2022 .