Tuning of agent-based computing

In this paper an Evolutionary Multi-agent system based computing processis subjected to detailed analysis of the parameters in order to ground a basefor better understanding this meta-heuristics from the practitioner's point of view.After reviewing the concepts of EMAS and its immunological variant, a series of experiments is shown and theresults of influencing of search outcomes by certain parameters are discussed.

[1]  Zbigniew Michalewicz,et al.  Genetic Algorithms Plus Data Structures Equals Evolution Programs , 1994 .

[2]  Rafal Drezewski,et al.  Co-Evolutionary Multi-Agent System with Speciation and Resource Sharing Mechanisms , 2012, Comput. Artif. Intell..

[3]  Peter Stone,et al.  A Multiagent Approach to Autonomous Intersection Management , 2008, J. Artif. Intell. Res..

[4]  Marek Kisiel-Dorohinicki,et al.  The Application of Evolution Process in Multi-Agent World to the Prediction System , 1996 .

[5]  Michael Wooldridge,et al.  Introduction to multiagent systems , 2001 .

[6]  Carlos Cotta,et al.  Asymptotic guarantee of success for multi-agent memetic systems , 2013 .

[7]  Andreas Tolk,et al.  Towards a taxonomy of agents and multi-agent systems , 2007, SpringSim '07.

[8]  Leszek Siwik,et al.  Classical and Agent-Based Evolutionary Algorithms for Investment Strategies Generation , 2009 .

[9]  Nicholas R. Jennings,et al.  Agent-Based Business Process Management , 1996, Int. J. Cooperative Inf. Syst..

[10]  S.D.J. McArthur,et al.  Multi-Agent Systems for Power Engineering Applications—Part I: Concepts, Approaches, and Technical Challenges , 2007, IEEE Transactions on Power Systems.

[11]  Jing Liu,et al.  A multiagent genetic algorithm for global numerical optimization , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[12]  Marek Kisiel-Dorohinicki,et al.  Agent-Based Evolutionary and Immunological Optimization , 2007, International Conference on Computational Science.

[13]  Leszek Siwik Agent-Based Multi-Objective Evolutionary Algorithms with Cultural and Immunological Mechanisms , 2009 .

[14]  Dipankar Dasgupta,et al.  Immunological Computation: Theory and Applications , 2008 .

[15]  Pascal Bouvry,et al.  Intelligent Decision Systems in Large-Scale Distributed Environments , 2011, Studies in Computational Intelligence.

[16]  Robert Schaefer,et al.  Genetic Search Reinforced by the Population Hierarchy , 2002, FOGA.

[17]  Asuman E. Ozdaglar,et al.  Distributed multi-agent optimization with state-dependent communication , 2010, Math. Program..

[18]  Tapabrata Ray,et al.  Agent-Based Evolutionary Search , 2010 .

[19]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[20]  Marek Kisiel-Dorohinicki,et al.  Agent-based computing in an augmented cloud environment , 2012, Comput. Syst. Sci. Eng..

[21]  Konstantinos G. Margaritis,et al.  An Experimental Study of Benchmarking Functions for Genetic Algorithms , 2002, Int. J. Comput. Math..

[22]  Marek Kisiel-Dorohinicki Agent-Oriented Model of Simulated Evolution , 2002, SOFSEM.

[23]  Yasushi Kambayashi,et al.  Multi-Agent Applications with Evolutionary Computation and Biologically Inspired Technologies: Intelligent Techniques for Ubiquity and Optimization , 2010 .

[24]  Aleksander Byrski,et al.  Evolutionary Multi-Agent Computing in Inverse Problems , 2013, Comput. Sci..

[25]  S. Wierzchon FUNCTION OPTIMIZATION BY THE IMMUNE METAPHOR , 2002 .

[26]  Robert Schaefer,et al.  A TWO‐LAYER AGENT‐BASED SYSTEM FOR LARGE‐SCALE DISTRIBUTED COMPUTATION , 2008, Comput. Intell..