Subsonic and intersonic mode II crack propagation with a rate-dependent cohesive zone

A recent experimental study has demonstrated the attainability of intersonic shear crack growth along weak planes in otherwise homogeneous, isotropic, linear elastic solids subjected to remote loading conditions (Rosakis et al., Science 284 (5418) (1999) 1337). The relevant experimental observations are summarized brie8y here and the conditions governing the attainment of intersonic crack speeds are examined. Motivated by experimental observations, subsonic and intersonic mode II crack propagation with a rate-dependent cohesive zone is subsequently analyzed. A cohesive law is assumed, wherein the cohesive shear traction is either a constant or varies linearly with the local sliding rate. Complete decohesion is assumed to occur when the crack tip sliding displacement reaches a material-speci;c critical value. Closed form expressions are obtained for the near-tip ;elds. With a cohesive zone of ;nite size, it is found that the dynamic energy release rate is ;nite through out the intersonic regime. Crack tip stability issues are addressed and favorable speed regimes are identi;ed. The in8uence of shear strength of the crack plane and of a rate parameter on crack propagation behavior is also investigated. The isochromatic fringe patterns predicted by the analytical solution are compared with the experimental observations of Rosakis et al. (1999) and comments are made on the validity of the proposed model. ? 2002 Elsevier Science Ltd. All rights reserved.

[1]  Philippe H. Geubelle,et al.  Intersonic crack propagation in homogeneous media under shear-dominated loading: Theoretical analysis , 2001 .

[2]  D. Shockey,et al.  Crack propagation at supersonic velocities , 1969 .

[3]  H. Georgiadis On the stress singularity in steady-state transonic shear crack propagation , 1986 .

[4]  Huajian Gao,et al.  Intersonic Crack Propagation—Part I: The Fundamental Solution , 2001 .

[5]  Huajian Gao,et al.  Continuum and atomistic studies of intersonic crack propagation , 2001 .

[6]  D. P. A reconciliation of dynamic crack velocity and Rayleigh wave speed in isotropic brittle solids , 2004 .

[7]  E. Glennie A strain-rate dependent crack model , 1971 .

[8]  L. B. Freund,et al.  The mechanics of dynamic shear crack propagation , 1979 .

[9]  Gao,et al.  How fast can cracks propagate? , 2000, Physical review letters.

[10]  Arun Shukla,et al.  Investigation of the mechanics of intersonic crack propagation along a bimaterial interface using coherent gradient sensing and photoelasticity , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  Michel Campillo,et al.  Contribution of radar interferometry to a two-step inversion of the kinematic process of the 1992 Landers earthquake , 1999 .

[12]  I. N. Sneddon,et al.  Boundary value problems , 2007 .

[13]  Alan Needleman,et al.  An analysis of intersonic crack growth under shear loading , 1999 .

[14]  E. Glennie The unsteady motion of a rate-dependent crack model , 1971 .

[15]  Huajian Gao Surface roughening and branching instabilities in dynamic fracture , 1993 .

[16]  K. Ravi-Chandar,et al.  An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching , 1984 .

[17]  Albert S. Kobayashi,et al.  Mechanics of crack curving and branching — a dynamic fracture analysis , 1985 .

[18]  K. Broberg Cracks and Fracture , 1999 .

[19]  S. Melin When does a crack grow under mode II conditions? , 1986, International Journal of Fracture.

[20]  K. B. Broberg,et al.  On crack paths , 1987 .

[21]  A. Rosakis,et al.  The use of a coherent gradient sensor in dynamic mixed-mode fracture mechanics experiments , 1992 .

[22]  Jay Fineberg,et al.  Instability in dynamic fracture , 1999 .

[23]  L. Freund,et al.  Observations on high strain rate crack growth based on a strip yield model , 1990 .

[24]  S. Nemat-Nasser,et al.  Compression‐induced nonplanar crack extension with application to splitting, exfoliation, and rockburst , 1982 .

[25]  E. Johnson,et al.  On the initiation of unidirectional slip , 1990 .

[26]  Kim B. Olsen,et al.  Three-Dimensional Dynamic Simulation of the 1992 Landers Earthquake , 1997 .

[27]  John R. Rice,et al.  The mechanics of earthquake rupture , 1980 .

[28]  John Lambros,et al.  SHEAR DOMINATED TRANSONIC INTERFACIAL CRACK GROWTH IN A BIMATERIAL-I. EXPERIMENTAL OBSERVATIONS , 1995 .

[29]  P. Spudich,et al.  Direct observation of rupture propagation during the 1979 Imperial Valley earthquake using a short baseline accelerometer array , 1984 .

[30]  John W. Hutchinson,et al.  Dynamic Fracture Mechanics , 1990 .

[31]  A. Rosakis,et al.  Experimental observations of intersonic crack growth in asymmetrically loaded unidirectional composite plates , 2001 .

[32]  K. Broberg Intersonic mode II crack acceleration , 1999 .

[33]  Ares J. Rosakis,et al.  Shear dominated transonic interfacial crack growth in a bimaterial I-II. Asymptotic fields and favorable velocity regimes , 1995 .

[34]  Keiiti Aki,et al.  A numerical study of two-dimensional spontaneous rupture propagation , 1977 .

[35]  Z. Suo,et al.  Intersonic crack growth on an interface , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[36]  Huajian Gao,et al.  On radiation-free transonic motion of cracks and dislocations , 1999 .

[37]  D. J. Andrews,et al.  Rupture velocity of plane strain shear cracks , 1976 .

[38]  J. Rice,et al.  Slightly curved or kinked cracks , 1980 .

[39]  A. Rosakis,et al.  Analysis of intersonic crack growth in unidirectional fiber-reinforced composites , 1999 .

[40]  W. Knauss,et al.  Dynamic crack propagation along a weakly bonded plane in a polymer , 1989 .

[41]  W. F. Riley,et al.  Experimental stress analysis , 1978 .

[42]  Danilo De Rossi,et al.  Cracks Faster than the Shear Wave Speed , 2022 .

[43]  L. B. Freund,et al.  Fracture Initiation Due to Asymmetric Impact Loading of an Edge Cracked Plate , 1990 .

[44]  K. B. Broberg,et al.  Intersonic Bilateral Slip , 1994 .

[45]  L. B. Freund,et al.  The stability of a rapid mode II shear crack with finite cohesive traction , 1979 .

[46]  Mustafa Aktar,et al.  Seismic imaging of the 1999 Izmit (Turkey) Rupture inferred from the near‐fault recordings , 2000 .

[47]  Ares J. Rosakis,et al.  How fast is rupture during an earthquake? New insights from the 1999 Turkey Earthquakes , 2001 .

[48]  Shamita Das Application of dynamic shear crack models to the study of the earthquake faulting process , 1985 .

[49]  Robert Burridge,et al.  Admissible Speeds for Plane-Strain Self-Similar Shear Cracks with Friction but Lacking Cohesion , 1973 .

[50]  Z. Suo,et al.  Mixed mode cracking in layered materials , 1991 .

[51]  K. B. Broberg,et al.  The near-tip field at high crack velocities , 1989 .

[52]  Arun Shukla,et al.  Intersonic crack propagation in bimaterial systems , 1998 .

[53]  Yoshiaki Ida,et al.  Cohesive force across the tip of a longitudinal‐shear crack and Griffith's specific surface energy , 1972 .

[54]  K. Broberg Intersonic mode II crack expansion , 1995 .

[55]  J. Rice,et al.  Fracture theory and its seismological applications , 1986 .

[56]  Ralph J. Archuleta,et al.  A faulting model for the 1979 Imperial Valley earthquake , 1984 .

[57]  Ares J. Rosakis,et al.  Intersonic shear crack growth along weak planes , 2000 .

[58]  K. Broberg How fast can a crack go? , 1996 .

[59]  J. Rice,et al.  The growth of slip surfaces in the progressive failure of over-consolidated clay , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[60]  Erland Johnson Process region changes for rapidly propagating cracks , 1992 .