Structural and optical properties of InAs/(In)GaAs/GaAs quantum dots with single-photon emission in the telecom C-band up to 77 K

C. Carmesin,1,* F. Olbrich,2 T. Mehrtens,3 M. Florian,1 S. Michael,1 S. Schreier,2 C. Nawrath,2 M. Paul,2 J. Höschele,2 B. Gerken,3 J. Kettler,2 S. L. Portalupi,2 M. Jetter,2 P. Michler,2 A. Rosenauer,3,4 and F. Jahnke1,4 1Institute for Theoretical Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany 2Institut für Halbleiteroptik und Funktionelle Grenzflächen, Center for Integrated Quantum Science and Technology (IQST) and SCoPE, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany 3Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany 4MAPEX center for materials and processes, University of Bremen, 28359 Bremen, Germany

[1]  Joachim Piprek,et al.  Material parameters of quaternary III - V semiconductors for multilayer mirrors at wavelength , 1996 .

[2]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[3]  Alex Zunger,et al.  Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: Atomistic symmetry, atomic relaxation, and piezoelectric effects , 2005 .

[4]  R. Rapaport,et al.  On-demand source of maximally entangled photon pairs using the biexciton-exciton radiative cascade , 2017, 1703.04380.

[5]  O. D. Organizzazione,et al.  Modell , 2020, Werkzeuge für Ideen.

[6]  P. Michler,et al.  Single-photon emission at 1.55 μm from MOVPE-grown InAs quantum dots on InGaAs/GaAs metamorphic buffers , 2017 .

[7]  P. Michler,et al.  On-demand generation of indistinguishable polarization-entangled photon pairs , 2013, 1308.4257.

[8]  Huiyun Liu,et al.  Silicon-based single quantum dot emission in the telecoms C‑band , 2017 .

[9]  W. Harrison,et al.  Elementary prediction of linear combination of atomic orbitals matrix elements , 1979 .

[10]  C. Boisrobert,et al.  Fiber Optic Communication Systems , 1979 .

[11]  Xifan Wu,et al.  Effects of Linear and Nonlinear Piezoelectricity on the Electronic Properties of InAs/GaAs Quantum Dots , 2006 .

[12]  Christian Mailhiot,et al.  Theory of semiconductor superlattice electronic structure , 1990 .

[13]  Y. Arakawa,et al.  Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. , 2014, Nano letters.

[14]  Jian-Wei Pan,et al.  On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. , 2016, Physical review letters.

[15]  M. Korkusinski,et al.  Atomistic tight-binding theory of multiexciton complexes in a self-assembled InAs quantum dot , 2010 .

[16]  C. Delerue,et al.  Self-consistent calculations of the optical properties of GaN quantum dots , 2003 .

[17]  Peter Michler,et al.  Quantum correlation among photons from a single quantum dot at room temperature , 2000, Nature.

[18]  J. Leburton,et al.  Absence of correlation between built-in electric dipole moment and quantum Stark effect in single InAs/GaAs self-assembled quantum dots , 2002, cond-mat/0204579.

[19]  Andrei Schliwa,et al.  Impact of size, shape, and composition on piezoelectric effects and electronic properties of In ( Ga ) As ∕ Ga As quantum dots , 2007 .

[20]  P. Michler,et al.  Triggered single-photon emission in the red spectral range from optically excited InP/(Al,Ga)InP quantum dots embedded in micropillars up to 100 K , 2011 .

[21]  P. N. Keating,et al.  Theory of the Third-Order Elastic Constants of Diamond-Like Crystals , 1966 .

[22]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[23]  Tight-binding model for semiconductor nanostructures , 2005, cond-mat/0507052.

[24]  Paolo Navaretti,et al.  Influence of composition on the piezoelectric effect and on the conduction band energy levels of inxGa1-xAs/GaAs quantum dots , 2004 .

[25]  Yang Li,et al.  Long-distance free-space quantum key distribution in daylight towards inter-satellite communication , 2017, Nature Photonics.

[26]  R. Mirin Photon antibunching at high temperature from a single InGaAs/GaAs quantum dot , 2004 .

[27]  Lin-wang Wang,et al.  Applicability of the k ⋅ p method to the electronic structure of quantum dots , 1998 .

[28]  Ron Kaspi,et al.  Interpolating semiconductor alloy parameters: Application to quaternary III-V band gaps , 2003 .

[29]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[30]  Fabio Beltram,et al.  Empirical spds^* tight-binding calculation for cubic semiconductors : general method and material parameters , 1998 .

[31]  G. Kresse,et al.  Band alignment of semiconductors from density-functional theory and many-body perturbation theory , 2014 .

[32]  M. Kamp,et al.  Single-photon emission of InAs/InP quantum dashes at 1.55 μm and temperatures up to 80 K , 2016 .

[33]  G. Agrawal Fiber-Optic Communication Systems: Agrawal/Fiber-Optic , 2010 .

[34]  D. Bimberg,et al.  Electronic and optical properties of strained quantum dots modeled by 8-band k⋅p theory , 1999 .

[35]  Adrian Avramescu,et al.  Measurement of specimen thickness and composition in Al(x)Ga(1-x)N/GaN using high-angle annular dark field images. , 2009, Ultramicroscopy.

[36]  Garnett W. Bryant,et al.  Strain effects on the electronic structure of strongly coupled self-assembled InAs/GaAs quantum dots : Tight-binding approach , 2006 .

[37]  Andrew G. Glen,et al.  APPL , 2001 .

[38]  Tobias Heindel,et al.  A stand-alone fiber-coupled single-photon source , 2017, Scientific Reports.

[39]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[40]  A J Shields,et al.  A quantum light-emitting diode for the standard telecom window around 1,550 nm , 2017, Nature Communications.

[41]  D. Mourad Tight-binding branch-point energies and band offsets for cubic InN, GaN, AlN, and AlGaN alloys , 2013, 1302.1725.

[42]  Tapfer,et al.  Elastic lattice deformation of semiconductor heterostructures grown on arbitrarily oriented substrate surfaces. , 1993, Physical review. B, Condensed matter.

[43]  D. Bimberg,et al.  InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure. , 1995, Physical review. B, Condensed matter.

[44]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[45]  Johann Peter Reithmaier,et al.  Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots , 2013 .

[46]  P. Michler,et al.  Temperature-dependent properties of single long-wavelength InGaAs quantum dots embedded in a strain reducing layer , 2017 .

[47]  D. Hu,et al.  Measurement of indium concentration profiles and segregation efficiencies from high-angle annular dark field-scanning transmission electron microscopy images. , 2013, Ultramicroscopy.

[48]  M. Pistol,et al.  Calculations of the electronic structure of strained InAs quantum dots in InP , 2002 .

[49]  Christopher J. K. Richardson,et al.  Two-photon interference from a bright single photon source at telecom wavelengths , 2015, 1511.05617.

[50]  P. Vogl,et al.  A Semi-empirical tight-binding theory of the electronic structure of semiconductors†☆ , 1983 .

[51]  Xifan Wu,et al.  Importance of second-order piezoelectric effects in zinc-blende semiconductors. , 2006, Physical review letters.

[52]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[53]  D. Mourad,et al.  Determination of valence-band offset at cubic CdSe/ZnTe type-II heterojunctions: A combined experimental and theoretical approach , 2012, 1208.2188.

[54]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[55]  D. Chadi Spin-orbit splitting in crystalline and compositionally disordered semiconductors , 1977 .

[56]  Zhichuan Niu,et al.  Single photon extraction from self-assembled quantum dots via stable fiber array coupling , 2017 .

[57]  Yajun Wei,et al.  Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering , 2004 .

[58]  Electronic structure of and quantum size effect in III-V and II-VI semiconducting nanocrystals using a realistic tight binding approach , 2005, cond-mat/0505451.

[59]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[60]  Eoin P. O'Reilly,et al.  Theory of the electronic structure of GaN/AlN hexagonal quantum dots , 2000 .

[61]  P. Michler,et al.  Neutral and charged biexciton-exciton cascade in near-telecom-wavelength quantum dots , 2016 .

[62]  Max A. Migliorato,et al.  Composition and strain dependence of the piezoelectric coefficients in InxGa1-xAs alloys , 2006 .

[63]  A. Rosenauer,et al.  Optimization of the preparation of GaN-based specimens with low-energy ion milling for (S)TEM. , 2012, Micron.