Robustness of Fusion Frames under Erasures of Subspaces and of Local Frame Vectors

Fusion frames were recently introduced to model applications under distributed processing requirements. In this paper we study the behavior of fusion frames under erasures of subspaces and of local frame vectors. We derive results on sufficient conditions for a fusion frame to be robust to such erasures as well as results on the design of fusion frames which are optimally robust in the sense of worst case behavior of the reconstruction error.

[1]  Helmut Bölcskei,et al.  Frame-theoretic analysis of oversampled filter banks , 1998, IEEE Trans. Signal Process..

[2]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[3]  Robert W. Heath,et al.  Linear dispersion codes for MIMO systems based on frame theory , 2002, IEEE Trans. Signal Process..

[4]  P. Casazza,et al.  Frames of subspaces , 2003, math/0311384.

[5]  Peter G. Casazza,et al.  Equal-Norm Tight Frames with Erasures , 2003, Adv. Comput. Math..

[6]  A. Aldroubi,et al.  Wavelets on irregular grids with arbitrary dilation matrices and frame atoms for L2(Rd) , 2004, math/0703438.

[7]  John J. Benedetto,et al.  Sigma-delta quantization and finite frames , 2004, ICASSP.

[8]  V. Paulsen,et al.  Optimal frames for erasures , 2004 .

[9]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[10]  P G Cazassa,et al.  FRAMES OF SUBSPACES. WAVELETS, FRAMES AND OPERATOR THEORY , 2004 .

[11]  M. Fornasier Quasi-orthogonal decompositions of structured frames , 2004 .

[12]  M. Asgari,et al.  Frames and bases of subspaces in Hilbert spaces , 2005 .

[13]  Wenchang Sun G-frames and G-Riesz Bases ⁄ , 2005, math/0508104.

[14]  Don H. Johnson,et al.  Analysis of noise reduction in redundant expansions under distributed processing requirements , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[15]  Don H. Johnson,et al.  Analyzing the robustness of redundant population codes in sensory and feature extraction systems , 2006, Neurocomputing.

[16]  P. Casazza,et al.  Fusion frames and distributed processing , 2006, math/0605374.

[17]  Don H. Johnson,et al.  Feature-Based Information Processing with Selective Attention , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[18]  P. Casazza,et al.  The Kadison–Singer Problem in mathematics and engineering , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Wenchang Sun Stability of g-frames , 2007 .

[20]  Mariano A. Ruiz,et al.  Frames of subspaces and operators , 2007, 0706.1484.

[21]  P. Gǎvruţa,et al.  On the duality of fusion frames , 2007 .

[22]  M. Asgari,et al.  FRAMES OF SUBSPACES AND APPROXIMATION OF THE INVERSE FRAME OPERATOR , 2007 .

[23]  Bernhard G. Bodmann,et al.  Decoherence-Insensitive Quantum Communication by Optimal $C^{\ast }$-Encoding , 2007, IEEE Transactions on Information Theory.

[24]  R. Calderbank,et al.  Robust dimension reduction, fusion frames, and Grassmannian packings , 2007, 0709.2340.

[25]  B. Bodmann Optimal linear transmission by loss-insensitive packet encoding☆ , 2007 .

[26]  Peter G. Casazza,et al.  Modeling sensor networks with fusion frames , 2007, SPIE Optical Engineering + Applications.