Global optimization of sensitivity and dynamic range for two-center holographic recording

The performance of two-center holographic recording is theoretically studied and described in detail. We present a systematic method for global optimization of two-center holographic recording. Whereas the method presented is general, we perform optimization for lithium niobate crystals doped with iron and manganese (LiNbO3:Fe:Mn). Both dynamic range (M/#) and sensitivity (S) are considered for global optimization, and the optimum design parameters for LiNbO3:Fe:Mn crystals are predicted. To achieve optimization we use both an analytic approach and a complete numerical approach. The absorption of light in the crystal is also considered. We show that the optimum design parameters for maximizing M/# are different from those for maximizing S. Therefore a trade-off exists between dynamic range and sensitivity. We also describe the complete dependence of S in two-center recording on the design parameters. We show in particular, for the first time to our knowledge, that S depends on the ratio of recording and sensitizing intensities and not on the absolute intensities.

[1]  Juan Zhang,et al.  Experimental study of accumulative recording during nonvolatile holographic storage in LiNbO3:Fe:Mn crystals , 2002 .

[2]  Demetri Psaltis,et al.  Photorefractive recording in LiNbO(3):Mn. , 2002, Optics letters.

[3]  D Psaltis,et al.  System measure for persistence in holographic recording and application to singly-doped and doubly-doped lithium niobate. , 2001, Applied optics.

[4]  O. Matoba,et al.  Enhancement of Non-volatile Recording by an External Field in Doubly doped Lithium Niobate , 2001 .

[5]  D. Psaltis,et al.  The role of carrier mobility in holographic recording in LiNbO3 , 2001 .

[6]  Ali Adibi,et al.  Two-center holographic recording , 2001 .

[7]  Liren Liu,et al.  Intensity dependence of two-center nonvolatile holographic recording in LiNbO3 : Cu : Ce crystals , 2001 .

[8]  L. Hesselink,et al.  Volume Holographic Storage in Near-Stoichiometric LiNbO3:Ce,Mn. , 2000 .

[9]  Karsten Buse,et al.  Role of iron in lithium-niobate crystals for the dark-storage time of holograms , 2000 .

[10]  K. Kitamura,et al.  Angle-multiplexed hologram storage in LiNbO(3):Tb, Fe. , 2000, Optics letters.

[11]  Liu Liren,et al.  Photorefractive Holographic Dynamics in Doubly Doped LiNbO 3 :Fe:Mn , 2000 .

[12]  Y. Liu,et al.  Nonvolatile photorefractive holograms in LiNbO(3):CuCe crystals. , 2000, Optics letters.

[13]  Liu Liren,et al.  THE DYNAMICS OF HOLOGRAPHIC STORAGE IN DOUBLY DOPED LiNbO 3 :Fe:Mn , 2000 .

[14]  D Psaltis,et al.  Sensitivity improvement in two-center holographic recording. , 2000, Optics letters.

[15]  C. Zhou,et al.  Prescription for optimizing holograms in LiNbO(3):Fe:Mn. , 2000, Optics letters.

[16]  I. Maravic,et al.  Localized holographic recording in doubly doped lithium niobate , 1999, 1999 IEEE LEOS Annual Meeting Conference Proceedings. LEOS'99. 12th Annual Meeting. IEEE Lasers and Electro-Optics Society 1999 Annual Meeting (Cat. No.99CH37009).

[17]  Ali Adibi,et al.  Effect of annealing in two-center holographic recording , 1999 .

[18]  G W Burr,et al.  Thermal fixing of 10,000 Holograms in LiNbO3:Fe. , 1999, Applied optics.

[19]  R. Macfarlane,et al.  Two-color holography in reduced near-stoichiometric lithium niobate. , 1998, Applied optics.

[20]  R. Neurgaonkar,et al.  Photorefractive materials for nonvolatile volume holographic data storage , 1998, Science.

[21]  D. Psaltis,et al.  Non-volatile holographic storage in doubly doped lithium niobate crystals , 1998, Nature.

[22]  Demetri Psaltis,et al.  Holographic Data Storage , 1998, Computer.

[23]  D Psaltis,et al.  Storage of 1000 holograms with use of a dual-wavelength method. , 1997, Applied optics.

[24]  D Psaltis,et al.  Electrical fixing of 1000 angle-multiplexed holograms in SBN:75. , 1997, Optics letters.

[25]  Amnon Yariv,et al.  Holographic storage dynamics in lithium niobate: theory and experiment , 1996 .

[26]  P B Bennett,et al.  The physiology of decompression illness. , 1995, Scientific American.

[27]  L Hesselink,et al.  Volume Holographic Storage and Retrieval of Digital Data , 1994, Science.

[28]  F. Jermann,et al.  Light-induced charge transport in LiNbO 3 :Fe at high light intensities , 1993 .

[29]  F. Mok,et al.  Angle-multiplexed storage of 5000 holograms in lithium niobate. , 1993, Optics letters.

[30]  Karsten Buse,et al.  Two-step photorefractive hologram recording in LiNbO3:Fe , 1993 .

[31]  Pochi Yeh,et al.  Dynamics of grating formation in photovoltaic media , 1991, Optical Society of America Annual Meeting.

[32]  P. Hertel,et al.  Theory of Thermal Hologram Fixing and Application to LiNbO3:Cu , 1987 .

[33]  H. C. Külich A new approach to read volume holograms at different wavelengths , 1987 .

[34]  E. Krätzig,et al.  Photorefractive and Photovoltaic Effects in Doped LiNbO 3 , 1977 .

[35]  Alastair M. Glass,et al.  Multi-Photon photorefractive processes for optical storage in LiNbO 3 , 1974 .

[36]  Alastair M. Glass,et al.  Multiphoton photorefractive processes for optical storage in LiNbO3 , 1974 .

[37]  O. Mikami Cu-diffused layers in LiNbO3 for reversible holographic storage , 1974 .

[38]  J. J. Amodei,et al.  Coupled‐Wave Analysis of Holographic Storage in LiNbO3 , 1972 .

[39]  F. Micheron,et al.  Electrical Control of Fixation and Erasure of Holographic Patterns in Ferroelectric Materials , 1972 .

[40]  J. J. Amodei,et al.  HOLOGRAPHIC PATTERN FIXING IN ELECTRO‐OPTIC CRYSTALS , 1971 .

[41]  H. Kogelnik Coupled wave theory for thick hologram gratings , 1969 .

[42]  Liu You-Wen,et al.  Photorefractive Holographic Dynamics in Doubly Doped LiNbO3:Fe:Mn , 2000 .

[43]  D. Psaltis Holographic Memories , 1996, Conference Proceedings LEOS'96 9th Annual Meeting IEEE Lasers and Electro-Optics Society.

[44]  D. Staebler,et al.  Coupled-Wave Analysis of Holographic Storage in LiNbO 3 , 1995 .

[45]  E. Krätzig,et al.  Photo-induced currents and voltages in LiNbO3 , 1976 .

[46]  D. Psaltis,et al.  Adaptive Optical Networks Using Photorefractive Crystals , 2022 .