A Parallel Edge Orientation Algorithm for Quadrilateral Meshes

One approach to achieving correct finite element assembly is to ensure that the local orientation of facets relative to each cell in the mesh is consistent with the global orientation of that facet. Rognes et al. have shown how to achieve this for any mesh composed of simplex elements, and deal.II contains a serial algorithm for constructing a consistent orientation of any quadrilateral mesh of an orientable manifold. The core contribution of this paper is the extension of this algorithm for distributed memory parallel computers, which facilitates its seamless application as part of a parallel simulation system. Furthermore, our analysis establishes a link between the well-known Union-Find algorithm and the construction of a consistent orientation of a quadrilateral mesh. As a result, existing work on the parallelization of the Union-Find algorithm can be easily adapted to construct further parallel algorithms for mesh orientations.

[1]  George Cybenko,et al.  Practical parallel Union-Find algorithms for transitive closure and clustering , 1989, International Journal of Parallel Programming.

[2]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[3]  Jeremy Iverson,et al.  Evaluation of connected-component labeling algorithms for distributed-memory systems , 2015, Parallel Comput..

[4]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[5]  Robert E. Tarjan,et al.  Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.

[6]  Andreas Dedner,et al.  The Distributed and Unified Numerics Environment (DUNE) , 2006 .

[7]  Alistair A. Young,et al.  Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , 2017, MICCAI 2017.

[8]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[9]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[10]  Jean R. S. Blair,et al.  Experiments on Union-Find Algorithms for the Disjoint-Set Data Structure , 2010, SEA.

[11]  Benjamin S. Kirk,et al.  Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .

[12]  Michael Anderson,et al.  On Orienting Edges of Unstructured Two- and Three-Dimensional Meshes , 2015, ACM Trans. Math. Softw..

[13]  Andrew T. T. McRae,et al.  Firedrake: automating the finite element method by composing abstractions , 2015, ACM Trans. Math. Softw..

[14]  Richard J. Anderson,et al.  Wait-free parallel algorithms for the union-find problem , 1991, STOC '91.

[15]  Timofei I. Epanchintsev,et al.  Использование библиотеки FEniCS для моделирования левого желудочка сердца , 2016 .

[16]  Robert Michael Kirby,et al.  Nektar++: An open-source spectral/hp element framework , 2015, Comput. Phys. Commun..

[17]  Kelly P. Gaither,et al.  Data-parallel mesh connected components labeling and analysis , 2011, EGPGV '11.

[18]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[19]  A BaderDavid,et al.  A fast, parallel spanning tree algorithm for symmetric multiprocessors (SMPs) , 2005 .

[20]  M. Rognes,et al.  Efficient Assembly of H(div) and H(curl) Conforming Finite Elements , 2012, 1205.3085.

[21]  Md. Mostofa Ali Patwary,et al.  Multi-core Spanning Forest Algorithms using the Disjoint-set Data Structure , 2012, 2012 IEEE 26th International Parallel and Distributed Processing Symposium.