Loose Ontological Coupling and the Social Semantic Web

Best practices for the publication of Semantic Web data currently place an unacceptably high burden on the end-user, who is supposed to locate and embrace third-party, ontological structures prior to publishing any information. This paper argues for a different publication paradigm where end-users are encouraged to publish potentially incomplete or conflicting information according to their own local context, and where heterogeneous data is consolidated a posteriori through bottom–up, decentralized processes. This approach has two key advantages: first, it greatly simplifies the publication of semantic information by allowing users to contribute purely local data, without any consideration for global schemas or third-party structures. Second, it takes advantage of expressive, semantic links to relate both schemas and instances, creating complex webs of knowledge where cultural or social differences can flourish and be confronted one another.

[1]  Jeff Z. Pan,et al.  Fuzzy extensions of OWL: Logical properties and reduction to fuzzy description logics , 2010, Int. J. Approx. Reason..

[2]  Divesh Srivastava,et al.  Approximate Joins: Concepts and Techniques , 2005, VLDB.

[3]  William J. Rapaport,et al.  Syntactic Semantics: Foundations of Computational Natural-Language Understanding , 1988 .

[4]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[5]  Karl Aberer,et al.  A framework for semantic gossiping , 2002, SGMD.

[6]  Gio Wiederhold,et al.  Mediators in the architecture of future information systems , 1992, Computer.

[7]  Ian Horrocks,et al.  Completeness Guarantees for Incomplete Reasoners , 2010, International Semantic Web Conference.

[8]  Ralf Heese,et al.  An Architecture for Emergent Semantics , 2006, J. Data Semant..

[9]  Divesh Srivastava,et al.  Record linkage: similarity measures and algorithms , 2006, SIGMOD Conference.

[10]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[11]  Roy T. Fielding,et al.  Uniform Resource Identifiers (URI): Generic Syntax , 1998, RFC.

[12]  Karl Aberer,et al.  A Necessary Condition for Semantic Interoperability in the Large , 2004, CoopIS/DOA/ODBASE.

[13]  Karl Aberer,et al.  The chatty web: emergent semantics through gossiping , 2003, WWW '03.

[14]  J. Euzenat,et al.  Ontology Matching , 2007, Springer Berlin Heidelberg.

[15]  Jérôme Euzenat,et al.  Specification of a Common Framework for Characterizing Alignment , 2004 .

[16]  Karl Aberer,et al.  GridVine: An Infrastructure for Peer Information Management , 2007, IEEE Internet Computing.

[17]  Luc Steels,et al.  Semiotic Dynamics for Embodied Agents , 2006, IEEE Intelligent Systems.

[18]  Judea Pearl,et al.  Chapter 2 – BAYESIAN INFERENCE , 1988 .

[19]  Philippe Cudré-Mauroux Peer Data Management System , 2009, Encyclopedia of Database Systems.

[20]  Deborah L. McGuinness,et al.  OWL Web ontology language overview , 2004 .

[21]  Karl Aberer,et al.  idMesh: graph-based disambiguation of linked data , 2009, WWW '09.

[22]  William J. Rapaport,et al.  What Did You Mean by That? Misunderstanding, Negotiation, and Syntactic Semantics , 2003, Minds and Machines.

[23]  Karl Aberer,et al.  Probabilistic Message Passing in Peer Data Management Systems , 2006, 22nd International Conference on Data Engineering (ICDE'06).