Neural dynamics in cortex-striatum co-cultures—II. Spatiotemporal characteristics of neuronal activity

[1]  D. Plenz,et al.  Neural dynamics in cortex-striatum co-cultures—I. Anatomy and electrophysiology of neuronal cell types , 1996, Neuroscience.

[2]  Charles J. Wilson,et al.  Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum. , 1994, Journal of neurophysiology.

[3]  D. Plenz,et al.  The Basal Ganglia: “Minimal Coherence Detection” in Cortical Activity Distributions , 1994 .

[4]  C. Wilson,et al.  Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. , 1994, Journal of neurophysiology.

[5]  J. Pirch Basal forebrain and frontal cortex neuron responses during visual discrimination in the rat , 1993, Brain Research Bulletin.

[6]  J. Wickens,et al.  Analysis of striatal dynamics: the existence of two modes of behaviour. , 1993, Journal of theoretical biology.

[7]  A Aertsen,et al.  Current Source Density Profiles of Optical Recording Maps: a New Approach to the Analysis of Spatio‐temporal Neural Activity Patterns , 1993, The European journal of neuroscience.

[8]  H. Kita,et al.  GABAergic circuits of the striatum. , 1993, Progress in brain research.

[9]  Charles J. Wilson,et al.  The generation of natural firing patterns in neostriatal neurons. , 1993, Progress in brain research.

[10]  D. Surmeier,et al.  D1 and D2 dopamine receptor modulation of sodium and potassium currents in rat neostriatal neurons. , 1993, Progress in brain research.

[11]  J. Wickens,et al.  The corticostriatal system on computer simulation: an intermediate mechanism for sequencing of actions. , 1993, Progress in brain research.

[12]  R. Neuman,et al.  Serotonin (5-HT2) receptor mediated enhancement of cortical unit activity. , 1992, Canadian journal of physiology and pharmacology.

[13]  J. Bolam,et al.  Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat , 1992, Neuroscience.

[14]  D. Surmeier,et al.  Dopamine receptor subtypes colocalize in rat striatonigral neurons. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. Bolz,et al.  Formation and preservation of cortical layers in slice cultures. , 1992, Journal of neurobiology.

[16]  A. Parent,et al.  Cortical input to parvalbumin-immunoreactive neurones in the putamen of the squirrel monkey , 1992, Brain Research.

[17]  Charles J. Wilson Dendritic morphology, inward rectification, and the functional properties of neostriatal neurons , 1992 .

[18]  Joel L. Davis,et al.  Single neuron computation , 1992 .

[19]  H. Kita,et al.  Interneurons in the rat striatum: relationships between parvalbumin neurons and cholinergic neurons , 1992, Brain Research.

[20]  Michael Erb,et al.  Dynamics of Activity in Biology-Oriented Neural Network Models: Stability at Low Firing Rates , 1992 .

[21]  G. Rebec,et al.  Bilateral cortical ablations attenuate amphetamine-induced excitations of neostriatal motor-related neurons in freely moving rats , 1991, Neuroscience Letters.

[22]  R. North,et al.  Membrane properties and synaptic responses of rat striatal neurones in vitro. , 1991, The Journal of physiology.

[23]  H. Nishino,et al.  Basal ganglia neural activity during operant feeding behavior in the monkey: Relation to sensory integration and motor execution , 1991, Brain Research Bulletin.

[24]  T. Sejnowski,et al.  Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. , 1991, Journal of neurophysiology.

[25]  Walter J. Freeman,et al.  Asymmetric sigmoid non-linearity in the rat olfactory system , 1991, Brain Research.

[26]  G Bernardi,et al.  Involvement of GABA systems in feedback regulation of glutamate‐and GABA‐mediated synaptic potentials in rat neostriatum. , 1991, The Journal of physiology.

[27]  G Bernardi,et al.  GABA depolarizes neurons in the rat striatum: An in vivo study , 1991, Synapse.

[28]  J. Wickens,et al.  Two dynamic modes of striatal function under dopaminergic‐cholinergic control: Simulation and analysis of a model , 1991, Synapse.

[29]  J. Wayne Aldridge,et al.  The temporal structure of spike trains in the primate basal ganglia: afferent regulation of bursting demonstrated with precentral cerebral cortical ablation , 1991, Brain Research.

[30]  D. Prince,et al.  Postnatal maturation of the GABAergic system in rat neocortex. , 1991, Journal of neurophysiology.

[31]  Alessandro Stefani,et al.  Developmental regulation of a slowly-inactivating potassium conductance in rat neostriatal neurons , 1991, Neuroscience Letters.

[32]  J. Hablitz,et al.  Initiation of epileptiform activity by excitatory amino acid receptors in the disinhibited rat neocortex. , 1991, Journal of neurophysiology.

[33]  J. Gaiarsa,et al.  GABA mediated excitation in immature rat CA3 hippocampal neurons , 1990, International Journal of Developmental Neuroscience.

[34]  J. Millar,et al.  Concentration-dependent actions of stimulated dopamine release on neuronal activity in rat striatum , 1990, Neuroscience.

[35]  H. Kita,et al.  Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study , 1990, Brain Research.

[36]  F. L. D. Silva,et al.  Basic mechanisms of cerebral rhythmic activities , 1990 .

[37]  D J Woodward,et al.  A region in the dorsolateral striatum of the rat exhibiting single-unit correlations with specific locomotor limb movements. , 1990, Journal of neurophysiology.

[38]  T J Sejnowski,et al.  When is an inhibitory synapse effective? , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[39]  F. Wouterlood,et al.  Hippocampal and midline thalamic fibers and terminals in relation to the choline acetyltransferase‐immunoreactive neurons in nucleus accumbens of the rat: A light and electron microscopic study , 1990, The Journal of comparative neurology.

[40]  M. Kimura Behaviorally contingent property of movement-related activity of the primate putamen. , 1990, Journal of neurophysiology.

[41]  G Bernardi,et al.  Synaptic and intrinsic control of membrane excitability of neostriatal neurons. I. An in vivo analysis. , 1990, Journal of neurophysiology.

[42]  D. James Surmeier,et al.  Muscarinic modulation of a transient K+ conductance in rat neostriatal neurons , 1990, Nature.

[43]  S. T. Kitai,et al.  Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  A. Mcgeorge,et al.  The organization of the projection from the cerebral cortex to the striatum in the rat , 1989, Neuroscience.

[45]  C. Wilson,et al.  Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. , 1989, Journal of neurophysiology.

[46]  O. Hikosaka,et al.  Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. , 1989, Journal of neurophysiology.

[47]  B H Gähwiler,et al.  Activity-dependent disinhibition. II. Effects of extracellular potassium, furosemide, and membrane potential on ECl- in hippocampal CA3 neurons. , 1989, Journal of neurophysiology.

[48]  B. Gähwiler,et al.  Activity-dependent disinhibition. I. Repetitive stimulation reduces IPSP driving force and conductance in the hippocampus in vitro. , 1989, Journal of neurophysiology.

[49]  B M Salzberg,et al.  Optical recording of voltage changes in nerve terminals and in fine neuronal processes. , 1989, Annual review of physiology.

[50]  B. Gähwiler,et al.  Organotypic cultures of neural tissue , 1988, Trends in Neurosciences.

[51]  T. Bonhoeffer,et al.  Optical recording with single cell resolution from monolayered slice cultures of rat hippocampus , 1988, Neuroscience Letters.

[52]  R. Frostig,et al.  Optical imaging of neuronal activity. , 1988, Physiological reviews.

[53]  D. Prince,et al.  Relative contributions of passive equilibrium and active transport to the distribution of chloride in mammalian cortical neurons. , 1988, Journal of neurophysiology.

[54]  M. Armstrong‐James,et al.  Evidence for a specific role for cortical NMDA receptors in slow-wave sleep , 1988, Brain Research.

[55]  H. Kita,et al.  Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations , 1988, Brain Research.

[56]  H. Romijn,et al.  Hypoxia preferentially destroys GABAergic neurons in developing rat neocortex explants in culture , 1988, Experimental Neurology.

[57]  G. Rebec,et al.  Reciprocal zones of excitation and inhibition in the neostriatum , 1988, Synapse.

[58]  J. Hablitz Spontaneous ictal-like discharges and sustained potential shifts in the developing rat neocortex. , 1987, Journal of neurophysiology.

[59]  D. Prince,et al.  Cellular and synaptic physiology and epileptogenesis of developing rat neocortical neurons in vitro. , 1987, Brain research.

[60]  P. Calabresi,et al.  Intrinsic membrane properties of neostriatal neurons can account for their low level of spontaneous activity , 1987, Neuroscience.

[61]  T. Berger,et al.  Long-term effects of dopamine-depleting brain lesions on spontaneous activity of type II striatal neurons: Relation to behavioral recovery , 1986, Brain Research.

[62]  H. Dodt,et al.  Muscarinic slow excitation and muscarinic inhibition of synaptic transmission in the rat neostriatum. , 1986, The Journal of physiology.

[63]  M. Gutnick,et al.  An N-methyl-d-aspartate (NMDA) receptor antagonist reduces bicuculline-induced depolarization shifts in neocortical explant cultures , 1986, Neuroscience Letters.

[64]  M. Kimura The role of primate putamen neurons in the association of sensory stimuli with movement , 1986, Neuroscience Research.

[65]  J. Wu,et al.  Glutamate decarboxylase‐immunoreactive structures in the rat neostriatum: A correlated light and electron microscopic study including a combination of Golgi impregnation with immunocytochemistry , 1985, The Journal of comparative neurology.

[66]  G. E. Alexander,et al.  Microstimulation of the primate neostriatum. II. Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties. , 1985, Journal of neurophysiology.

[67]  A. Grinvald Real-time optical mapping of neuronal activity: from single growth cones to the intact mammalian brain. , 1985, Annual review of neuroscience.

[68]  J. Rajkowski,et al.  Tonically discharging putamen neurons exhibit set-dependent responses. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[69]  W. Oertel,et al.  Immunocytochemical studies of GABAergic neurons in rat basal ganglia and their relations to other neuronal systems , 1984, Neuroscience Letters.

[70]  M. Frotscher,et al.  Identification of projecting neurons in rat neostriatal slices , 1984, Brain Research.

[71]  N. A. Buchwald,et al.  Intracellular studies of the convergence of sensory input on caudate neurons of cat , 1983, Brain Research.

[72]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[73]  B. Connors,et al.  Mechanisms of neocortical epileptogenesis in vitro. , 1982, Journal of neurophysiology.

[74]  S. T. Kitai,et al.  Morphological and physiological properties of neostriatal neurons: An intracellular horseradish peroxidase study in the rat , 1982, Neuroscience.

[75]  B. Gähwiler Organotypic monolayer cultures of nervous tissue , 1981, Journal of Neuroscience Methods.

[76]  Charles J. Wilson,et al.  Spontaneous firing patterns of identified spiny neurons in the rat neostriatum , 1981, Brain Research.

[77]  S. T. Kitai,et al.  Single neostriatal efferent axons in the globus pallidus: a light and electron microscopic study. , 1981, Science.

[78]  Y. Katayama,et al.  Electrophysiological evidence favoring intracaudate axon collaterals of GABAergic caudate output neurons in the cat , 1981, Brain Research.

[79]  J. W. Lighthall,et al.  Inhibition in slices of rat neostriatum , 1981, Brain Research.

[80]  P. Somogyi,et al.  Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscopic study using the golgi‐peroxidase transport‐degeneration procedure , 1981, The Journal of comparative neurology.

[81]  Donald J. Woodward,et al.  Differences in cutaneous sensory response properties of single somatosensory cortical neurons in awake and halothane anesthetized rats , 1981, Brain Research Bulletin.

[82]  [Types of spike activity and nature of neuronal interrelations in the rat neostriatum]. , 1981, Neirofiziologiia = Neurophysiology.

[83]  Charles J. Wilson,et al.  Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: A study employing intracellular injection of horseradish peroxidase , 1980 .

[84]  C. P. Vandermaelen,et al.  Intracellular analysis of synaptic potentials in rat neostriatum following stimulation of the cerebral cortex, thalamus, and substantia nigra , 1980, Brain Research Bulletin.

[85]  Melburn R. Park,et al.  Recurrent inhibition in the rat neostriatum , 1980, Brain Research.

[86]  S. T. Kitai,et al.  Medium spiny neuron projection from the rat striatum: An intracellular horseradish peroxidase study , 1980, Brain Research.

[87]  J. E. Vaughn,et al.  The GABA Neurons and their axon terminals in rat corpus striatum as demonstrated by GAD immunocytochemistry , 1979, The Journal of comparative neurology.

[88]  M. Sugimori,et al.  Response properties and electrical constants of caudate nucleus neurons in the cat. , 1978, Journal of neurophysiology.

[89]  M. Anderson Discharge patterns of basal ganglia neurons during active maintenance of postural stability and adjustment to chair tilt , 1978, Brain Research.

[90]  G. Pfurtscheller Handbook of electroencephalography and clinical neurophysiology , 1978 .

[91]  A. Grinvald,et al.  Optical methods for monitoring neuron activity. , 1978, Annual review of neuroscience.

[92]  D. Prince,et al.  Neurophysiology of epilepsy. , 1978, Annual review of neuroscience.

[93]  H. Mclennan,et al.  Mechanisms of excitation and inhibition in the nigrostriatal system , 1977, Brain Research.

[94]  M. Sugimori,et al.  Convergence of excitatory synaptic inputs to caudate spiny neurons , 1977, Brain Research.

[95]  W. Brown,et al.  The developing caudate nucleus in the euthyroid and hypothyroid rat , 1977, The Journal of comparative neurology.

[96]  G. Bernardi,et al.  The action of acetylcholine and L-glutamic acid on rat caudate neurons , 1976, Brain Research.

[97]  Maturation of electrical activity of cerebral neocortex in tissue culture , 1975, Experimental Neurology.

[98]  P. Buser,et al.  Single unit recording in the caudate nucleus during sessions with elaborate movements in the awake monkey. , 1974, Brain research.

[99]  M C Calvet,et al.  Patterns of spontaneous electrical activity in tissue cultures of mammalian cerebral cortex vs. cerebellum. , 1974, Brain research.

[100]  R. Hall,et al.  Organization of motor and somatosensory neocortex in the albino rat , 1974 .

[101]  A Theory of Nerve Nets , 1974 .

[102]  S. L. Liles Single-unit responses of caudate neurons to stimulation of frontal cortex, substantia nigra and entopeduncular nucleus in cats. , 1974, Journal of neurophysiology.

[103]  H. Niki,et al.  Delayed alternation performance and unit activity of the caudate head and medial orbitofrontal gyrus in the monkey. , 1972, Brain research.

[104]  T. Powell,et al.  The structure of the caudate nucleus of the cat: light and electron microscopy. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[105]  C. Welker Microelectrode delineation of fine grain somatotopic organization of (SmI) cerebral neocortex in albino rat. , 1971, Brain research.

[106]  W. R. Adey,et al.  Firing of neuron pairs in cat association cortex during sleep and wakefulness. , 1970, Journal of neurophysiology.

[107]  D. Prince The depolarization shift in "epileptic" neurons. , 1968, Experimental neurology.

[108]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. I. The single spike train. , 1967, Biophysical journal.

[109]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. , 1967, Biophysical journal.

[110]  J. Houchin,et al.  Units in the cerebral cortex of the anaesthetized rat and the correlations between their discharges , 1966, The Journal of physiology.

[111]  H. Mclennan,et al.  Cholinergic mechanisms in the caudate nucleus , 1966, The Journal of physiology.

[112]  S M Crain,et al.  Development of "organotypic" bioelectric activities in central nervous tissues during maturation in culture. , 1966, International review of neurobiology.

[113]  F. Bloom,et al.  Anesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microelectrophoresis. , 1965, The Journal of pharmacology and experimental therapeutics.

[114]  C. Rocha-Miranda Single unit analysis of cortex-caudate connections. , 1965, Electroencephalography and clinical neurophysiology.

[115]  M. Bornstein,et al.  BIOELECTRIC ACTIVITY OF NEONATAL MOUSE CEREBRAL CORTEX DURING GROWTH AND DIFFERENTIATION IN TISSUE CULTURE. , 1964, Experimental neurology.

[116]  J. Eccles,et al.  Inhibitory Phasing of Neuronal Discharge , 1962, Nature.

[117]  D. Purpura,et al.  Morphological and physiological properties of chronically isolated immature neocortex. , 1961, Experimental neurology.

[118]  A. Scheibel,et al.  Degeneration and regeneration of the nervous system , 1960 .

[119]  F. Echlin The supersensitivity of chronically "isolated" cerebral cortex as a mechanism in focal epilepsy. , 1959, Electroencephalography and clinical neurophysiology.

[120]  D. D. B. Degeneration and Regeneration of the Nervous System , 1930 .