A Modified Cancelable Biometrics Scheme Using Random Projection

This paper presents a random projection scheme for cancelable iris recognition. Instead of using original iris features, masked versions of the features are generated through the random projection in order to increase the security of the iris recognition system. The proposed framework for iris recognition includes iris localization, sector selection of the iris to avoid eyelids and eyelashes effects, normalization, segmentation of normalized iris region into halves, selection of the upper half for further reduction of eyelids and eyelashes effects, feature extraction with Gabor filter, and finally random projection. This framework guarantees exclusion of eyelids and eyelashes effects, and masking of the original Gabor features to increase the level of security. Matching is performed with a Hamming Distance (HD) metric. The proposed framework achieves promising recognition rates of 99.67% and a leading Equal Error Rate (EER) of 0.58%.

[1]  Anil K. Jain,et al.  Biometric Template Security , 2008, EURASIP J. Adv. Signal Process..

[2]  Nicholas Evans Guest Editorial - Special Issue on biometric security and privacy , 2015 .

[3]  Raghunath S. Holambe,et al.  Half-Iris Feature Extraction and Recognition Using a New Class of Biorthogonal Triplet Half-Band Filter Bank and Flexible k-out-of-n:A Postclassifier , 2012, IEEE Transactions on Information Forensics and Security.

[4]  Arun Ross,et al.  Iris Segmentation Using Geodesic Active Contours , 2009, IEEE Transactions on Information Forensics and Security.

[5]  Norimichi Tsumura,et al.  On the Security of BioEncoding Based Cancelable Biometrics , 2011, IEICE Trans. Inf. Syst..

[6]  Mayada Tarek,et al.  Pre-image Resistant Cancelable Biometrics Scheme Using Bidirectional Memory Model , 2017, Int. J. Netw. Secur..

[7]  Rama Chellappa,et al.  Cancelable Biometrics: A review , 2015, IEEE Signal Processing Magazine.

[8]  Julian Fiérrez,et al.  Cancelable Templates for Sequence-Based Biometrics with Application to On-line Signature Recognition , 2010, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[9]  Christoph Busch,et al.  On application of bloom filters to iris biometrics , 2014, IET Biom..

[10]  John Daugman,et al.  High Confidence Visual Recognition of Persons by a Test of Statistical Independence , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Andrew Beng Jin Teoh,et al.  Secure speech template protection in speaker verification system , 2010, Speech Commun..

[12]  Anil K. Jain,et al.  Biometric Template Protection: Bridging the performance gap between theory and practice , 2015, IEEE Signal Processing Magazine.

[13]  Nalini K. Ratha,et al.  Cancelable iris biometric , 2008, 2008 19th International Conference on Pattern Recognition.

[14]  Arun Ross,et al.  Biometrics Security and Privacy Protection [From the Guest Editors] , 2015, IEEE Signal Process. Mag..

[15]  Chin-Wang Tao,et al.  Iris Recognition Using Possibilistic Fuzzy Matching on Local Features , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[16]  Xiaojing Chen,et al.  Sparse representation matching for person re-identification , 2016, Inf. Sci..

[17]  P Punithavathi,et al.  Can cancellable biometrics preserve privacy , 2017 .

[18]  Libor Masek,et al.  Recognition of Human Iris Patterns for Biometric Identification , 2003 .

[19]  Andreas Uhl,et al.  Cancelable Iris Biometrics Using Block Re-mapping and Image Warping , 2009, ISC.

[20]  Debasis Samanta,et al.  A Novel Approach to Iris Localization for Iris Biometric Processing , 2007 .

[21]  Somnath Dey,et al.  Cancelable iris template generation using look-up table mapping , 2015, 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN).

[22]  John Daugman,et al.  New Methods in Iris Recognition , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[23]  Agus Harjoko,et al.  A Method for Iris Recognition Based on 1D Coiflet Wavelet , 2009 .

[24]  Nalini K. Ratha,et al.  Generating Cancelable Fingerprint Templates , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Christoph Busch,et al.  Towards Bloom filter-based indexing of iris biometric data , 2015, 2015 International Conference on Biometrics (ICB).

[26]  Norimichi Tsumura,et al.  BioEncoding: A Reliable Tokenless Cancelable Biometrics Scheme for Protecting IrisCodes , 2010, IEICE Trans. Inf. Syst..

[27]  Mayada Tarek,et al.  Robust cancellable biometrics scheme based on neural networks , 2016, IET Biom..

[28]  Andreas Uhl,et al.  Security analysis of a cancelable iris recognition system based on block remapping , 2011, 2011 18th IEEE International Conference on Image Processing.

[29]  Ajay Kumar,et al.  Comparison and combination of iris matchers for reliable personal authentication , 2010, Pattern Recognit..

[30]  Fathi E. Abd El-Samie,et al.  Efficient iris localization and recognition , 2017 .

[31]  Andrew Teoh Beng Jin,et al.  High security Iris verification system based on random secret integration , 2006 .

[32]  Richard P. Wildes,et al.  Iris recognition: an emerging biometric technology , 1997, Proc. IEEE.

[33]  Andrew Beng Jin Teoh,et al.  Biohashing: two factor authentication featuring fingerprint data and tokenised random number , 2004, Pattern Recognit..

[34]  Rama Chellappa,et al.  Sectored Random Projections for Cancelable Iris Biometrics , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[35]  Yen-Lung Lai,et al.  Cancellable iris template generation based on Indexing-First-One hashing , 2017, Pattern Recognit..

[36]  Andrew Beng Jin Teoh,et al.  Improved Biohashing Method Based on Most Intensive Histogram Block Location , 2014, ICONIP.

[37]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .