Pollination ecology of Arum italicum (Araceae).

The pollination ecology of Arum italicum was studied in south-western France. This plant attracts olfactory dung-breeding flies through deceit. These insects are principally represented by Diptera, all belonging to saprophyte families. The volatilization of the odouriferous compounds, responsible for their attraction, is achieved through the production of heat by the appendix. The insects are trapped for 24 h in order to participate in both sexual phases of the protogynous inflorescence. The male flowers produce three heat events during flowering. These peaks of heat seem to be involved in the spathe movements, since they occur during the opening of the inflorescence and the liberation of the insects. The last male heat event may be linked with the liberation of pollen and its dispersion by stimulating trapped flies. According to their frequency and pollen-load, two Psychoda species appear to be the most efficient pollinators (P. crassipenis and P. pusilla). Nevertheless, each of the other attracted species could play a significant role under different spatio-temporal conditions. Experiments on self-pollination have shown that obligate cross-pollination is necessary for A. italicum to set seeds. Moreover, hand- and natural-pollinated plants showed similarly high abortion frequencies suggesting that seed set may be more constrained by resources rather than by pollination limitation.

[1]  J. Pickett,et al.  9-Methylgermacrene-B; proposed structure for novel homosesquiterpene from the sex pheromone glands ofLutzomyia longipalpis (Diptera: Psychodidae) from Lapinha, Brazil , 1996, Journal of Chemical Ecology.

[2]  A. Dejean,et al.  Reproductive biology of Montrichardia arborescens (Araceae) in French Guiana , 2003, Journal of Tropical Ecology.

[3]  M. Gibernau,et al.  Pollination ecology of Philodendron squamiferum (Araceae) , 2002 .

[4]  M. Méndez Sexual mass allocation in species with inflorescences as pollination units: a comparison between Arum italicum and Arisaema (Araceae). , 2001, American journal of botany.

[5]  M. Méndez,et al.  Flowering dynamics in Arum italicum (Araceae): relative role of inflorescence traits, flowering synchrony, and pollination context on fruit initiation. , 2001, American journal of botany.

[6]  P. Klinkhamer,et al.  Selective seed abortion increases offspring survival in Cynoglossum officinale (Boraginaceae). , 2001, American journal of botany.

[7]  M. Gibernau,et al.  Thermogenesis in three Philodendron species (Araceae) of French Guiana , 2000 .

[8]  M. Gibernau,et al.  Flowering and Pollination of Philodendron melinonii (Araceae) in French Guiana , 2000 .

[9]  S. Uribe,et al.  The status of the Lutzomyia longipalpis species complex and possible implications for Leishmania transmission. , 1999, Memorias do Instituto Oswaldo Cruz.

[10]  R. Seymour,et al.  Respiration, temperature regulation and energetics of thermogenic inflorescences of the dragon lily Dracunculus vulgaris (Araceae) , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[11]  J. Ollerton,et al.  Evidence for stabilising selection acting on flowering time in Arum maculatum (Araceae): the influence of phylogeny on adaptation , 1999, Oecologia.

[12]  M. Méndez Effects of Sexual Reproduction on Growth and Vegetative Propagation in the Perennial Geophyte Arum italicum (Araceae) , 1999 .

[13]  A. Fridlender Observations sur la biologie de l'Arum cylindraceum Gasp. (Araceae) en Corse , 1999 .

[14]  M. Méndez Modification of phenotypic and functional gender in the monoecious Arum italicum (Araceae). , 1998, American journal of botany.

[15]  M. Méndez Sources of Variation in Seed Mass in Arum italicum , 1997, International Journal of Plant Sciences.

[16]  Marcos Mindezi SOURCES OF VARIATION IN SEED MASS IN ARUM ITALICUM , 1997 .

[17]  P. Boyce,et al.  The Genera of Araceae , 1997 .

[18]  C. Schal,et al.  The pollination biology of tuckahoe, Peltandra virginica (Araceae) , 1995 .

[19]  A. Stabentheiner,et al.  Dynamics of thermogenesis and structure of epidermal tissues in inflorescences of Arum maculatum. , 1995, The New phytologist.

[20]  G. Kite The floral odour of Arum maculatum , 1995 .

[21]  P. Marren The New Naturalists , 1995 .

[22]  P. Schopfer,et al.  Physiology of Movement , 1995 .

[23]  A. Borg-Karlson,et al.  Dimethyl oligosulphides, major volatiles released from Sauromatum guttatum and Phallus impudicus , 1994 .

[24]  G. Kudo,et al.  HEAT‐PRODUCTION AND CROSS‐POLLINATION OF THE ASIAN SKUNK CABBAGE SYMPLOCARPUS RENIFOLIUS (ARACEAE) , 1993 .

[25]  J. Obeso,et al.  Size-dependent reproductive and vegetative allocation in Arum italicum (Araceae) , 1993 .

[26]  J. R. Obeso,et al.  Influencia del osmóforo en la producción de infrutescencias en "Arum italicum" Miller ("Araceae") , 1992 .

[27]  A. Lack,et al.  The pollination of Arum maculatum L. - a historical review and new observations , 1991 .

[28]  P. Hammond,et al.  Insects visiting Arum dioscoridis Sm. and A. orientale M. Bieb , 1991 .

[29]  J. Roháček,et al.  Sphaeroceridae associated with flowering Arum maculatum (Araceae) in the vicinity of Tübingen, SW-Germany (Insecta : Diptera) , 1990 .

[30]  J. Ackerman,et al.  RELATIVE POLLINATOR EFFECTIVENESS AND EVOLUTION OF FLORAL TRAITS IN SPATHIPHYLLUM FRIEDRICHSTHALII (ARACEAE) , 1986 .

[31]  Helen J. Young Beetle pollination of Dieffenbachia longispatha (Araceae) , 1986 .

[32]  E. Schneider,et al.  ACTIVATION AND POSSIBLE ROLE OF THE “FOOD‐BODIES” OF SAUROMATUM (ARACEAE) , 1984 .

[33]  A. Dafni Mimicry and Deception in Pollination , 1984 .

[34]  S. Mayo Biarums for pleasure , 1980 .

[35]  B. Sherwood The Linnean Society of London , 1964, Nature.

[36]  K. Dormer THE TRUTH ABOUT POLLINATION IN ARUM , 1960 .

[37]  Peter Yeo,et al.  Natural history of pollination , 1947 .