LIMSI @ WMT'12

This paper describes LIMSI's submissions to the shared translation task. We report results for French-English and German-English in both directions. Our submissions use n-code, an open source system based on bilingual n-grams. In this approach, both the translation and target language models are estimated as conventional smoothed n-gram models; an approach we extend here by estimating the translation probabilities in a continuous space using neural networks. Experimental results show a significant and consistent BLEU improvement of approximately 1 point for all conditions. We also report preliminary experiments using an "on-the-fly" translation model.

[1]  Marianna Apidianaki,et al.  Data-Driven Semantic Analysis for Multilingual WSD and Lexical Selection in Translation , 2009, EACL.

[2]  Adam Lopez Tera-Scale Translation Models via Pattern Matching , 2008, COLING.

[3]  F ChenStanley,et al.  An Empirical Study of Smoothing Techniques for Language Modeling , 1996, ACL.

[4]  Helmut Schmidt,et al.  Probabilistic part-of-speech tagging using decision trees , 1994 .

[5]  Robert L. Mercer,et al.  The Mathematics of Statistical Machine Translation: Parameter Estimation , 1993, CL.

[6]  François Yvon,et al.  The pay-offs of preprocessing for German-English statistical machine translation , 2010, IWSLT.

[7]  José B. Mariño,et al.  N-gram-based Machine Translation , 2006, CL.

[8]  Philipp Koehn,et al.  Moses: Open Source Toolkit for Statistical Machine Translation , 2007, ACL.

[9]  José B. Mariño,et al.  Improving statistical MT by coupling reordering and decoding , 2006, Machine Translation.

[10]  Francisco Casacuberta,et al.  Machine Translation with Inferred Stochastic Finite-State Transducers , 2004, Computational Linguistics.

[11]  Hermann Ney,et al.  Triplet Lexicon Models for Statistical Machine Translation , 2008, EMNLP.

[12]  Alexander M. Fraser,et al.  A Smorgasbord of Features for Statistical Machine Translation , 2004, NAACL.

[13]  Olivier Galibert,et al.  Limsi’s Statistical Translation Systems for WMT‘08 , 2008, WMT@ACL.

[14]  Helmut Schmid,et al.  Estimation of Conditional Probabilities With Decision Trees and an Application to Fine-Grained POS Tagging , 2008, COLING.

[15]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[16]  Hermann Ney,et al.  Improved backing-off for M-gram language modeling , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[17]  Alexandre Allauzen,et al.  Continuous Space Translation Models with Neural Networks , 2012, NAACL.

[18]  Christoph Tillmann,et al.  A Unigram Orientation Model for Statistical Machine Translation , 2004, NAACL.

[19]  Alexandre Allauzen,et al.  Limsi @ Wmt11 , 2011, WMT@EMNLP.

[20]  Chris Callison-Burch,et al.  Scaling Phrase-Based Statistical Machine Translation to Larger Corpora and Longer Phrases , 2005, ACL.

[21]  Alexandre Allauzen,et al.  Structured Output Layer neural network language model , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[22]  Franz Josef Och,et al.  Minimum Error Rate Training in Statistical Machine Translation , 2003, ACL.

[23]  José B. Mariño,et al.  Ncode: an Open Source Bilingual N-gram SMT Toolkit , 2011, Prague Bull. Math. Linguistics.

[24]  Hermann Ney,et al.  Phrase-Based Statistical Machine Translation , 2002, KI.