Applying Randomness Effectively Based on Random Forests for Classification Task of Datasets of Insufficient Information
暂无分享,去创建一个
[1] Henrik Boström. Concurrent Learning of Large-Scale Random Forests , 2011, SCAI.
[2] J. Ross Quinlan,et al. Induction of Decision Trees , 1986, Machine Learning.
[3] Αλεξησ Καπορησ. 5η ΟΣΣ Κλάσεις Χρονικής Πολυπλοκότητας, ΝP-πληρότητα , 2010 .
[4] Andy Liaw,et al. Classification and Regression by randomForest , 2007 .
[5] Saso Dzeroski,et al. Combining Bagging and Random Subspaces to Create Better Ensembles , 2007, IDA.
[6] Jan M. Zytkow,et al. Handbook of Data Mining and Knowledge Discovery , 2002 .
[7] R. Tibshirani,et al. Improvements on Cross-Validation: The 632+ Bootstrap Method , 1997 .
[8] Robin Genuer,et al. Random Forests: some methodological insights , 2008, 0811.3619.
[9] Vassilios Petridis,et al. Fuzzy Lattice Neurocomputing (FLN) models , 2000, Neural Networks.
[10] Douglas H. Fisher,et al. Overcoming process delays with decision tree induction , 1994, IEEE Expert.
[11] William W. Cohen. Fast Effective Rule Induction , 1995, ICML.
[12] Vassilis G. Kaburlasos,et al. Improved Experimental Results Using Fuzzy Lattice Neurocomputing (FLN) Classifiers , 2003, MLMTA.
[13] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[14] Tin Kam Ho,et al. The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..
[15] Leo Breiman,et al. Bagging Predictors , 1996, Machine Learning.