Survey of Modal Logics

This Chapter provides a necessary background for studying applications of ND in modal logics. It is a collection of basic facts needed for understanding of the remaining chapters. Section 5.1. introduces propositional languages of multimodal logics and establishes notational conventions. After a presentation of general taxonomy of modal logics in Section 5.2. we characterize them axiomatically in the next section. Section 5.4. introduces relational semantics for different families of modal logics. Except standard Krikpe’s semantics it contains the basics of neighborhood semantics for weak modal logics. Some attention is paid to correspondence theory and some general schemata investigated later. After short section on completeness and decidability matters we finally present various kinds of first-order modal logic in Section 5.6.

[1]  M. Kracht Tools and Techniques in Modal Logic , 1999 .

[2]  Laurent Catach,et al.  TABLEAUX: A general theorem prover for modal logics , 1991, Journal of Automated Reasoning.

[3]  E. J. Lemmon,et al.  New foundations for Lewis modal systems , 1957, Journal of Symbolic Logic.

[4]  Saul A. Kripke,et al.  Naming and Necessity , 1980 .

[5]  R. Goldblatt Logics of Time and Computation , 1987 .

[6]  David Lewis Counterpart Theory and Quantified Modal Logic , 1968 .

[7]  Olivier Gasquet Completeness Results in Neighbourhood Semantics for Multi-Modal Monotonic and Regular Logics , 1996, Log. J. IGPL.

[8]  James W. Garson Unifying Quantified Modal Logic , 2005, J. Philos. Log..

[9]  R. A. Bull,et al.  Basic Modal Logic , 1984 .

[10]  Richard L. Mendelsohn,et al.  First-Order Modal Logic , 1998 .

[11]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[12]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[13]  Eric Pacuit,et al.  First-Order Classical Modal Logic , 2006, Stud Logica.

[14]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[15]  Dana S. Scott,et al.  Advice on Modal Logic , 1970 .

[16]  Saul Kripke,et al.  A completeness theorem in modal logic , 1959, Journal of Symbolic Logic.

[17]  Uwe Mönnich,et al.  Aspects of Philosophical Logic , 1981 .

[18]  D. Gabbay,et al.  Many-Dimensional Modal Logics: Theory and Applications , 2003 .

[19]  Rajeev Goré,et al.  Cut-free sequent and tableau systems for propositional Diodorean modal logics , 1994, Stud Logica.

[20]  Marcus Kracht,et al.  Normal monomodal logics can simulate all others , 1999, Journal of Symbolic Logic.

[21]  James W. Garson Modal Logic for Philosophers , 2006 .

[22]  James W. Garson,et al.  Quantification in Modal Logic , 1984 .

[23]  Helle Hvid Hansen,et al.  Monotonic modal logics , 2003 .

[24]  Sara Negri,et al.  Proof Theory for Modal Logic , 2011 .

[25]  K. Lambert Philosophical Problems in Logic , 1970 .

[26]  B. Jack Copeland,et al.  The Genesis of Possible Worlds Semantics , 2002, J. Philos. Log..

[27]  John P. Burgess,et al.  Basic Tense Logic , 1984 .

[28]  D. Gabbay,et al.  Handbook of tableau methods , 1999 .

[29]  Patrick Blackburn Nominal tense logic and other sorted intensional frameworks , 1990 .

[30]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[31]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic , 2002 .

[32]  A. Herzig,et al.  From Classical to Normal Modal Logics , 1996 .

[33]  D. Gabbay An Irreflexivity Lemma with Applications to Axiomatizations of Conditions on Tense Frames , 1981 .