A motion planning algorithm for the rolling-body problem

In this paper, we consider the control system ¿ defined by the rolling of a strictly convex surface S on a plane without slipping or spinning. It is well known that ¿ is completely controllable. The purpose of this paper is to present the numerical implementation of a constructive planning algorithm for ¿, which is based on a continuation method. The performances of that algorithm, both in robustness and convergence speed, are illustrated through two examples: rolling of a flattened ball and an egg on the plane.

[1]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[2]  I. Holopainen Riemannian Geometry , 1927, Nature.

[3]  A. Agrachev,et al.  An intrinsic approach to the control of rolling bodies , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[4]  T. Ważewski,et al.  Sur l'évaluation du domaine d'existence des fonctions implicites réelles ou complexes , 1948 .

[5]  Krzysztof Tchoń,et al.  Endogenous configuration space approach to mobile manipulators: A derivation and performance assessment of Jacobian inverse kinematics algorithms , 2003 .

[6]  M. Berger,et al.  Differential Geometry: Manifolds, Curves, and Surfaces , 1987 .

[7]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[8]  Eugene L. Allgower,et al.  Continuation and path following , 1993, Acta Numerica.

[9]  Yacine Chitour Path planning on compact Lie groups using a homotopy method , 2002, Syst. Control. Lett..

[10]  Antonio Bicchi,et al.  Dexterous Grippers: Putting Nonholonomy to Work for Fine Manipulation , 2002, Int. J. Robotics Res..

[11]  U. De,et al.  Differential Geometry of Manifolds , 2007 .

[12]  David J. Montana,et al.  The Kinematics of Contact and Grasp , 1988, Int. J. Robotics Res..

[13]  Héctor J. Sussmann,et al.  Line-Integral Estimates and Motion Planning Using the Continuation Method , 1998 .

[14]  Jian S. Dai,et al.  A Darboux-Frame-Based Formulation of Spin-Rolling Motion of Rigid Objects With Point Contact , 2010, IEEE Transactions on Robotics.

[15]  John T. Wen,et al.  A path space approach to nonholonomic motion planning in the presence of obstacles , 1997, IEEE Trans. Robotics Autom..

[16]  Y. Chitour A continuation method for motion-planning problems , 2006 .

[17]  H. Sussmann,et al.  A continuation method for nonholonomic path-finding problems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[18]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[19]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[20]  H. Sussmann New Differential Geometric Methods in Nonholonomic Path Finding , 1992 .

[21]  Krzysztof Tchoń,et al.  Singularity Robust Jacobian Inverse Kinematics for Mobile Manipulators , 2008 .

[22]  Zexiang Li,et al.  Motion of two rigid bodies with rolling constraint , 1990, IEEE Trans. Robotics Autom..

[23]  Leopold Alexander Pars,et al.  A Treatise on Analytical Dynamics , 1981 .

[24]  Antonio Bicchi,et al.  Rolling bodies with regular surface: controllability theory and applications , 2000, IEEE Trans. Autom. Control..

[25]  A. Chelouah,et al.  On the motion planning of rolling surfaces , 2003 .