A noticeable improvement in opto-electronic properties of nebulizer sprayed In2S3 thin films for stable-photodetector applications

[1]  M. Shkir,et al.  Enhanced dielectric and electrical properties of PbS nanostructures facilely synthesized by low-cost chemical route: An effect of Ce doping concentrations , 2021, Materials Chemistry and Physics.

[2]  M. Shkir,et al.  Influence of nanostructured SnS thin films for visible light photo detection , 2021 .

[3]  Abdullah S. Alshammari,et al.  A comprehensive experimental investigation of La@CdS nanostructured thin films: Structural, opto-nonlinear and photodetection properties , 2021, Surfaces and Interfaces.

[4]  D. Flandre,et al.  High-responsivity broadband photodetection of an ultra-thin In2S3/CIGS heterojunction on steel. , 2021, Optics letters.

[5]  Lili Tao,et al.  Nonlayered In2S3/Al2O3/CsPbBr3 Quantum Dot Heterojunctions for Sensitive and Stable Photodetectors , 2021 .

[6]  S. Shaji,et al.  Optoelectronic Characteristics of In2S3-CNT Nanocomposite Thin Films for Photodetector Application , 2021, Journal of Electronic Materials.

[7]  S. Sartale,et al.  Deposition of β-In2S3 Photosensitive Thin Films by Ultrasonic Spray Pyrolysis , 2020 .

[8]  A. Labidi,et al.  Highly sensitive nitrogen dioxide gas sensors based on sprayed β-In2S3 film , 2020 .

[9]  A. Wei,et al.  Growth of large-area two-dimensional non-layered β-In2S3 continuous thin films and application for photodetector device , 2020, Journal of Materials Science: Materials in Electronics.

[10]  A. Arulanantham,et al.  Solution processed copper zinc tin sulfide thin films for thermoelectric device applications , 2020 .

[11]  A. Arulanantham,et al.  Investigations on copper zinc tin sulfide thin films grown through nebulizer assisted spray pyrolysis technique , 2020, International Journal of Energy Research.

[12]  Wei Gao,et al.  An asymmetric contact-induced self-powered 2D In2S3 photodetector towards high-sensitivity and fast-response. , 2020, Nanoscale.

[13]  M. Shkir,et al.  A noticeable effect of Pr doping on key optoelectrical properties of CdS thin films prepared using spray pyrolysis technique for high-performance photodetector applications , 2020 .

[14]  A. S. Vorokh,et al.  Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder , 2019, Journal of Physics: Conference Series.

[15]  M. Kumar,et al.  Indium sulfide based metal-semiconductor-metal ultraviolet-visible photodetector , 2019, Sensors and Actuators A: Physical.

[16]  S. Kulkarni,et al.  Influence of solution molarity on structure, surface morphology, non-linear optical and electric properties of CdO thin films prepared by spray pyrolysis technique , 2019, Materials Research Express.

[17]  Mao-wen Xu,et al.  The construction of ZnS–In2S3 nanonests and their heterojunction boosted visible-light photocatalytic/photoelectrocatalytic performance , 2019, New Journal of Chemistry.

[18]  S. Shaji,et al.  Fabrication of visible light photodetector using co-evaporated Indium Sulfide thin films , 2019, Journal of Materials Science: Materials in Electronics.

[19]  Jianbin Xu,et al.  Thickness‐Dependent Optical Properties and In‐Plane Anisotropic Raman Response of the 2D β‐In2S3 , 2019, Advanced Optical Materials.

[20]  A. Arulanantham,et al.  A review on growth optimization of spray pyrolyzed Cu2ZnSnS4 chalcogenide absorber thin film , 2019, International Journal of Energy Research.

[21]  Xiufang Zhang,et al.  Indium sulfide nanotubes with sulfur vacancies as an efficient photocatalyst for nitrogen fixation , 2019, RSC advances.

[22]  Wenguang Tu,et al.  Tailored indium sulfide-based materials for solar-energy conversion and utilization , 2019, Journal of Photochemistry and Photobiology C: Photochemistry Reviews.

[23]  W. Macyk,et al.  How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. , 2018, The journal of physical chemistry letters.

[24]  A. Labidi,et al.  Ethanol sensing properties of sprayed β-In2S3 thin films , 2018 .

[25]  A. Matoussi,et al.  Electrical and dielectric properties of In2S3 synthesized by solid state reaction , 2016 .

[26]  R. Ismail,et al.  Preparation of high-sensitivity In2S3/Si heterojunction photodetector by chemical spray pyrolysis , 2016 .

[27]  C. Ho,et al.  Synthesis of In2S3 and Ga2S3 crystals for oxygen sensing and UV photodetection , 2016 .

[28]  M. Di Michiel,et al.  Structure reinvestigation of α-, β- and γ-In2S3 , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[29]  R. Ismail,et al.  The Effect of Molarity on some Physical Properties of In2S3 Thin Films Deposited by Chemical Spray Pyrolysis Technique , 2016, International Letters of Chemistry, Physics and Astronomy.

[30]  Hong Liu,et al.  In2S3 nanomaterial as a broadband spectrum photocatalyst to display significant activity , 2015 .

[31]  M. Mollar,et al.  Chemical spray pyrolysis of β-In2S3 thin films deposited at different temperatures , 2015 .

[32]  F. Aslan,et al.  Non-vacuum processed Cu2ZnSnS4 thin films: Influence of copper precursor on structural, optical and morphological properties , 2014 .

[33]  Debabrata Pradhan,et al.  Synthesis of In2S3 microspheres using a template-free and surfactant-less hydrothermal process and their visible light photocatalysis , 2014 .

[34]  M. Kincl,et al.  Synthesis, structure and optical properties of thin films from GeS2–In2S3 system deposited by thermal co-evaporation , 2014 .

[35]  K. Reddy,et al.  Characterization of Thermally Evaporated In2S3 Films for Solar Cell Application , 2013 .

[36]  C. D. Kartha,et al.  Modification of the optoelectronic properties of sprayed In2S3 thin films by indium diffusion for application as buffer layer in CZTS based solar cell , 2013 .

[37]  N. Kamoun,et al.  Synthesis and characterization of nanocrystallized In2S3 thin films via CBD technique , 2011 .

[38]  I. Mutlu,et al.  Preparation and characterization of In2S3 semiconductor thin films using the sol–gel method , 2011 .

[39]  O. Volobujeva,et al.  Indium sulfide thin films deposited by chemical spray of aqueous and alcoholic solutions , 2011 .

[40]  E. Chassaing,et al.  Electrodeposition of In2S3 buffer layer for Cu(In,Ga)Se2 solar cells , 2011 .

[41]  P. Prathap,et al.  Annealing effect on the physical properties of evaporated In2S3 films , 2010 .

[42]  Dennis Y.C. Leung,et al.  Photocatalytic performance of tetragonal and cubic β-In2S3 for the water splitting under visible light irradiation , 2010 .

[43]  K. Benchouk,et al.  Optical and electrical characterization of In2S3 buffer layer for photovoltaics applications , 2009 .

[44]  T. T. John,et al.  Spray pyrolyzed β-In2S3 thin films : Effect of postdeposition annealing , 2006 .

[45]  M. Kanzari,et al.  Fabrication and characterization of In2S3 thin films deposited by thermal evaporation technique , 2005 .

[46]  M. Sotelo-Lerma,et al.  Structural and optical studies on thermal-annealed In2S3 films prepared by the chemical bath deposition technique , 2005 .

[47]  D. Lincot,et al.  Growth studies and characterisation of In2S3 thin films deposited by atomic layer deposition (ALD) , 2004 .

[48]  N. Barreau,et al.  Evolution of the band structure of β-In2S3−3xO3x buffer layer with its oxygen content , 2003 .

[49]  J. Bernède,et al.  Structural and Photoelectrical Properties of Sprayed β-In2S3 Thin Films , 2000 .

[50]  Chang-Dae Kim,et al.  Optical energy gaps of β-In2S3 thin films grown by spray pyrolysis , 1986 .

[51]  R. Becker,et al.  Synthesis and photoelectrochemistry of In2S3 , 1986 .

[52]  H. H. Sutherland,et al.  The crystal structure of β‐In2S3 , 1965 .

[53]  G. King The space group of β‐In2S3 , 1962 .